Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint

被引:213
|
作者
Soon, Jing Jun [1 ]
Low, Kay-Soon [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Inverse-barrier method; maximum power point (MPP); particle swarm optimization (PSO); photovoltaic (PV) model; POWER POINT TRACKING; MODULES; SYSTEM; ARRAY;
D O I
10.1109/TPEL.2012.2188818
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The photovoltaic (PV) model is used in simulation studies to validate system design such as the maximum power point tracking algorithm and microgrid system. It is often difficult to simulate a PV module characteristic under different environmental conditions due to the limited information provided by the manufacturers. In this paper, a new approach using particle swarm optimization (PSO) with inverse barrier constraint is proposed to determine the unknown PV model parameters. The proposed method has been validated with three different PV technologies and the results show that the maximum mean modeling error at maximum power point is less than 0.02% for P-mp and 0.3% for V-mp.
引用
收藏
页码:3975 / 3983
页数:9
相关论文
共 50 条
  • [21] Parameter identification of electrostatic discharge model using particle swarm optimization algorithm
    Wang, Xiao-Dong
    Wang, Ke
    Wang, Jin-Shan
    Zhang, Hao-Ran
    Gaodianya Jishu/High Voltage Engineering, 2010, 36 (02): : 434 - 438
  • [22] Identification of Jiles-Atherton model parameters using particle swarm optimization
    Marion, Romain
    Scorretti, Riccardo
    Siauve, Nicolas
    Raulet, Marie-Ange
    Kraehenbuehl, Laurent
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 894 - 897
  • [23] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +
  • [24] NARMAX Identification of DC Motor Model Using Repulsive Particle Swarm Optimization
    Supeni, E.
    Yassin, Ihsan M.
    Ahmad, A.
    Rahman, F. Y. Abdul
    CSPA: 2009 5TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, 2009, : 1 - 7
  • [25] Spindle dynamics identification using particle swarm optimization
    Ganguly, Vasishta
    Schmitz, Tony L.
    JOURNAL OF MANUFACTURING PROCESSES, 2013, 15 (04) : 444 - 451
  • [26] Identification of Structural Systems Using Particle Swarm Optimization
    Xue, Songtao
    Tang, Hesheng
    Zhou, Jin
    JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, 2009, 8 (02) : 517 - 524
  • [27] Emergent system identification using particle swarm optimization
    Voss, MS
    Feng, X
    COMPLEX ADAPTIVE STRUCTURES, 2001, 4512 : 193 - 202
  • [28] A landscape-aware particle swarm optimization for parameter identification of photovoltaic models
    Li, Yaxin
    Yu, Kunjie
    Liang, Jing
    Yue, Caitong
    Qiao, Kangjia
    APPLIED SOFT COMPUTING, 2022, 131
  • [29] Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO)
    Dali, Ali
    Bouharchouche, Abderrezzak
    Diaf, Said
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [30] Enhanced Particle Swarm Optimization Based on Reference Direction and Inverse Model for Optimization Problems
    Wei Li
    Yaochi Fan
    Qingzheng Xu
    International Journal of Computational Intelligence Systems, 2020, 13 : 98 - 129