Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line

被引:53
|
作者
Arguin, Louis-Pierre [1 ,6 ]
Belius, David [2 ]
Bourgade, Paul [3 ]
Radziwill, Maksym [4 ]
Soundararajan, Kannan [5 ]
机构
[1] CUNY, Baruch Coll, Grad Ctr, New York, NY 10021 USA
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Courant Inst, 251 Mercer St,Room 603, New York, NY 10012 USA
[4] McGill Univ, Dept Math, 805 Sherbrooke St, West Montreal, PQ H3A 0G4, Canada
[5] Stanford Univ, 450 Serra Mall,Bldg 380, Stanford, CA 94305 USA
[6] Baruch Coll, One Bernard Baruch Way, New York, NY 10010 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
EXTREME VALUES;
D O I
10.1002/cpa.21791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the leading order of a conjecture by Fyodorov, Hiary, and Keating about the maximum of the Riemann zeta function on random intervals along the critical line. More precisely, as T -> infinity for a set of t SMALL ELEMENT OF [T, 2T] of measure (1-o(1)) T, we have max(vertical bar t-u vertical bar <= 1)log|zeta(1/2+iu)vertical bar=(1+o(1))loglogT. (c) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:500 / 535
页数:36
相关论文
共 50 条