Ultrafine MnO2/graphene based hybrid nanoframeworks as high-performance flexible electrode for energy storage applications

被引:42
|
作者
Jayashree, M. [1 ]
Parthibavarman, M. [1 ]
BoopathiRaja, R. [1 ]
Prabhu, S. [2 ]
Ramesh, R. [2 ]
机构
[1] Chikkaiah Naicker Coll, PG & Res Dept Phys, Erode 638004, Tamil Nadu, India
[2] Periyar Univ, Dept Phys, Salem 636011, Tamil Nadu, India
关键词
ELECTROCHEMICAL PROPERTIES; MNO2; GRAPHENE; COMPOSITES; NANOSTRUCTURES; NANOCOMPOSITE; NANOFLOWERS; OXIDES;
D O I
10.1007/s10854-020-03254-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pristine MnO2 and MnO2/graphene (abbreviated as Mn and MnG) nanocomposite has been prepared through a facile hydrothermal method under mild conditions. The morphology and nanostructure of the prepared composite are individualized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman microscope, Brunauer-Emmet-Teller and X-ray photoelectron spectroscopy (XPS). XRD results reveal the pure tetragonal phase of alpha-MnO2 with the space group of I4/m. TEM images show spherical morphology for pure Mn and layered structure for MnG. The results of N-2 adsorption-desorption analysis indicates the specific surface area of the prepared nanomaterials and it was found to be 92 m(2)/g and 134 m(2)/g for the pure Mn and MnG nanocomposites. The XPS spectrum shows the confining states of different elements present in the composites. Electrochemical execution of the synthesized composite electrodes was evaluated using both two and three-electrode system. We have achieved maximum specific capacitance of 1537 Fg(-1) at the charging current of 20 Ag-1 with high steadiness was observed up to 6000 cycles. The fabricated ASC devices manifest a maximum energy density of 22 Wh kg(-1) with long standing cyclic stability of 90.5% capacitance retention after 5000 cycles.
引用
收藏
页码:6910 / 6918
页数:9
相关论文
共 50 条
  • [41] Preparation and performance of MnO2/graphene composite electrode materials
    Yuan, Lei
    Fu, Zhibing
    Chang, Lijuan
    Yang, Xi
    Zhang, Houqiong
    Wang, Chaoyang
    Tang, Yongjian
    Wang, Chaoyang, 1600, Editorial Office of High Power Laser and Particle Beams (26):
  • [42] Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications
    Ahmad, Maqsood
    Imran, Muhammad
    Afzal, Amir Muhammad
    ul Haq, Muhammad Ahsan
    Alqarni, Areej S.
    Iqbal, Muhammad Waqas
    Issa, Shams A. M.
    Zakaly, Hesham M. H.
    INORGANICS, 2024, 12 (08)
  • [43] Charge storage behavior of sugar derived carbon/MnO2 composite electrode material for high-performance supercapacitors
    Vangapally, Naresh
    Kumar, Kiran, V
    Kumar, Amit
    Martha, Surendra K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 893
  • [44] High-performance energy storage hybrid supercapacitor device based on NiCoS@CNT@graphene composite electrode material
    Imran, Muhammad
    Waris, Muhammad Hamza
    Khan, Rizwan
    Afzal, Amir Muhammad
    Iqbal, Muhammad Waqas
    Mumtaz, Muhammad Azhar
    Ghfar, Ayman A.
    Ali, Asghar
    Mumtaz, Sohail
    Hussain, Zahid
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [45] Graphene for high-performance composite electrodes and flexible energy storage devices
    Ren, Wencai
    Wu, Zhongshuai
    Wang, Dawei
    Zhou, Guangmin
    Li, Na
    Weng, Zhe
    Chen, Zongping
    Shi, Ying
    Li, Feng
    Cheng, Hui-Ming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [46] A self-supporting graphene/MnO2 composite for high-performance supercapacitors
    Xin, Guoxiang
    Wang, Yanhui
    Zhang, Jinhui
    Jia, Shaopei
    Zang, Jianbing
    Wang, Yafei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (32) : 10176 - 10184
  • [47] High surface area of crystalline/amorphous ultrathin MnO2 nanosheets electrode for high-performance flexible micro-supercapacitors
    Ma, Zhipeng
    Zhao, Jinghao
    Fan, Yuqian
    Qin, Xiujuan
    Shao, Guangjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
  • [48] Graphene-oxide-modified MnO2 composite electrode for high-performance flexible quasi-solid-state zinc-ion batteries
    Pang, Ning
    Wang, Mengqiu
    Wang, Xue
    Xiong, Dayuan
    Xu, Shaohui
    Lu, Xuehui
    Wang, Lianwei
    Jiang, Lin
    Chu, Paul K.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 299
  • [49] Sandwich-structured MnO2/polypyrrole/reduced graphene oxide hybrid composites for high-performance supercapacitors
    Han, Guangqiang
    Liu, Yun
    Kan, Erjun
    Tang, Jian
    Zhang, Lingling
    Wang, Huanhuan
    Tang, Weihua
    RSC ADVANCES, 2014, 4 (20): : 9898 - 9904
  • [50] High Electrochemical Capacity MnO2/Graphene Hybrid Fibers Based on Crystalline Regulatable MnO2 for Wearable Supercapacitors
    Tian, Xiaojuan
    Cheng, Xinyue
    Liao, Shiqin
    Chen, Juanfen
    Lv, Pengfei
    Wei, Qufu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (45) : 52415 - 52426