Align Representations with Base: A New Approach to Self-Supervised Learning

被引:3
|
作者
Zhang, Shaofeng [1 ]
Qiu, Lyn [1 ]
Zhu, Feng [2 ]
Yan, Junchi [1 ]
Zhang, Hengrui [1 ]
Zhao, Rui [1 ,2 ,3 ]
Li, Hongyang [2 ]
Yang, Xiaokang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Artificial Intelligence Inst, MoE Key Lab Artificial Intelligence, Shanghai, Peoples R China
[2] SenseTime Res, Hong Kong, Peoples R China
[3] Shanghai Jiao Tong Univ, Qing Yuan Res Inst, Shanghai, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.01610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing symmetric contrastive learning methods suffer from collapses (complete and dimensional) or quadratic complexity of objectives. Departure from these methods which maximize mutual information of two generated views, along either instance or feature dimension, the proposed paradigm introduces intermediate variables at the feature level, and maximizes the consistency between variables and representations of each view. Spec(fically, the proposed intermediate variables are the nearest group of base vectors to representations. Hence, we call the proposed method ARB (Align Representations with Base). Compared with other symmetric approaches, ARB 1) does not require negative pairs, which leads the complexity of the overall objective function is in linear order, 2) reduces feature redundancy, increasing the information density of training samples, 3) is more robust to output dimension size, which outperforms previous feature-wise arts over 28% Top-1 accuracy on ImageNet-100 under low-dimension settings.
引用
收藏
页码:16579 / 16588
页数:10
相关论文
共 50 条
  • [21] Towards Efficient and Effective Self-supervised Learning of Visual Representations
    Addepalli, Sravanti
    Bhogale, Kaushal
    Dey, Priyam
    Babu, R. Venkatesh
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 523 - 538
  • [22] Continually Learning Self-Supervised Representations with Projected Functional Regularization
    Gomez-Villa, Alex
    Twardowski, Bartlomiej
    Yu, Lu
    Bagdanov, Andrew D.
    van de Weijer, Joost
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3866 - 3876
  • [23] Self-Supervised Learning of Face Representations for Video Face Clustering
    Sharma, Vivek
    Tapaswi, Makarand
    Sarfraz, M. Saquib
    Stiefelhagen, Rainer
    2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 360 - 367
  • [24] Self-Supervised Representations for Multi-View Reinforcement Learning
    Yang, Huanhuan
    Shi, Dianxi
    Xie, Guojun
    Peng, Yingxuan
    Zhang, Yi
    Yang, Yantai
    Yang, Shaowu
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2203 - 2213
  • [25] Self-supervised graph representations of WSIs
    Pina, Oscar
    Vilaplana, Veronica
    GEOMETRIC DEEP LEARNING IN MEDICAL IMAGE ANALYSIS, VOL 194, 2022, 194 : 107 - 117
  • [26] A study of the generalizability of self-supervised representations
    Tendle, Atharva
    Hasan, Mohammad Rashedul
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [27] Learning self-supervised molecular representations for drug–drug interaction prediction
    Rogia Kpanou
    Patrick Dallaire
    Elsa Rousseau
    Jacques Corbeil
    BMC Bioinformatics, 25
  • [28] BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping
    Elbanna, Gasser
    Scheidwasser-Clow, Neil
    Kegler, Mikolaj
    Beckmann, Pierre
    El Hajal, Karl
    Cernak, Milos
    HEAR: HOLISTIC EVALUATION OF AUDIO REPRESENTATIONS, VOL 166, 2021, 166 : 25 - 47
  • [29] Visual Reinforcement Learning With Self-Supervised 3D Representations
    Ze, Yanjie
    Hansen, Nicklas
    Chen, Yinbo
    Jain, Mohit
    Wang, Xiaolong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) : 2890 - 2897
  • [30] Repeat and learn: Self-supervised visual representations learning by Scene Localization
    Altabrawee, Hussein
    Noor, Mohd Halim Mohd
    PATTERN RECOGNITION, 2024, 156