Roll-to-roll manufacturing method of aqueous-processed thick LiNi0.5Mn0.3Co0.2O2 electrodes for lithium-ion batteries

被引:10
|
作者
Demiryurek, Ridvan [1 ]
Gurbuz, Nergiz [1 ]
Hatipoglu, Gizem [1 ,2 ]
Er, Mesut [1 ]
Malkoc, Hasan [1 ]
Guleryuz, Ozkan [1 ]
Uyar, Gulsen [1 ]
Uzun, Davut [1 ]
Ates, Mehmet Nurullah [1 ]
机构
[1] Sci & Technol Res Council Turkey TUBITAK, Energy Storage Div, Rail Transport Technol Inst RTTI, TR-41470 Kocaeli, Turkey
[2] Fraunhofer Inst Mat Recycling & Resource Strategi, Hanau, Germany
关键词
aqueous processing; crack-free coating; electrode manufacturing; lithium-ion batteries; WATER-SOLUBLE BINDERS; ELECTROCHEMICAL PERFORMANCE; CARBOXYMETHYL CELLULOSE; NEGATIVE ELECTRODES; ACTIVE MATERIAL; CATHODE; CAPACITY; POLYMER; STABILITY; CELLS;
D O I
10.1002/er.7171
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aqueous-based slurry media for cathode electrode production offers a cleaner and safer environment during the electrode manufacturing step compared with the conventional organic solvent-based method used in the lithium-ion battery industry. In this work, carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), and poly(ethylene oxide) (PEO) water-based binders are used to prepare LiNi0.5Mn0.3Co0.2O2 (NMC) cathode electrode. Detail electrochemical analysis reveals that the optimum mass ratio of CMC:SBR mixture is 1:2 when preparing an aqueous slurry for the NMC electrode. To mitigate particle cracking phenomenon during electrode drying step and obtain higher mass loading, a multi-layer coating technique is implemented. CMC-PEO binder mixture in aqueous media is also studied as an alternative aqueous processing method for NMC electrodes. The electrodes prepared with CMC-PEO mixture are demonstrated to be all crack-free, and electrochemical results indicate that the optimum mass loading of NMC electrode is between 15 and 18 mg cm(-2). This method is further tested in pouch cell format using a roll-to-roll pilot-scale production line to show the feasibility for commercial applications. Remarkably, pouch cell results manifest that aqueous-processed NMC cathode against graphite anode maintains its 89% capacity at 1C even after 1000 cycles. Highlights Water-based binders of carboxymethyl cellulose-poly(ethylene oxide) provide excellent cycling stability for LiNi0.5Mn0.3Co0.2O2 electrode. Multilayer coating allows electrodes for higher loadings without any crack formation. The water-based electrode preparation method is validated by pilot scale roll-to-roll electrode production line.
引用
收藏
页码:21182 / 21194
页数:13
相关论文
共 50 条
  • [21] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Tang, Xiaodong
    Guo, Qiankun
    Zhou, Miaomiao
    Zhong, Shengwen
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 40 : 278 - 286
  • [22] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Xiaodong Tang
    Qiankun Guo
    Miaomiao Zhou
    Shengwen Zhong
    Chinese Journal of Chemical Engineering, 2021, 40 (12) : 278 - 286
  • [23] Direct Regeneration of LiNi0.5Co0.2Mn0.3O2 Cathode from Spent Lithium-Ion Batteries by the Molten Salts Method
    Jiang, Guanghui
    Zhang, Yannan
    Meng, Qi
    Zhang, Yingjie
    Dong, Peng
    Zhang, Mingyu
    Yang, Xi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (49) : 18138 - 18147
  • [24] Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries
    Yue, Ling-Ping
    Lou, Ping
    Xu, Guo-Hua
    Xu, Huiqiang
    Jin, Guoliang
    Li, Long
    Deng, Heming
    Cheng, Qi
    Tang, Shun
    Cao, Yuan-Cheng
    IONICS, 2020, 26 (06) : 2757 - 2761
  • [25] Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries
    Ling-Ping Yue
    Ping Lou
    Guo-Hua Xu
    Huiqiang Xu
    Guoliang Jin
    Long Li
    Heming Deng
    Qi Cheng
    Shun Tang
    Yuan-Cheng Cao
    Ionics, 2020, 26 : 2757 - 2761
  • [26] Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials
    Qiao, Ruimin
    Liu, Jun
    Kourtakis, Kostantinos
    Roelofs, Mark G.
    Peterson, Darin L.
    Duff, James P.
    Deibler, Dean T.
    Wray, L. Andrew
    Yang, Wanli
    JOURNAL OF POWER SOURCES, 2017, 360 : 294 - 300
  • [27] Ion Transport and Electrochemical Reaction in LiNi0.5Co0.2Mn0.3O2-Based High Energy/Power Lithium-Ion Batteries
    Xu, Jinmei
    Yang, Jiandong
    Wang, Shaofei
    Jiang, Jiangmin
    Zhuang, Quanchao
    Qiu, Xiangyun
    Wu, Kai
    Zheng, Honghe
    NANOMATERIALS, 2023, 13 (05)
  • [28] Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation
    Gao, Ruichuan
    Sun, Conghao
    Xu, Lijun
    Zhou, Tao
    Zhuang, Luqi
    Xie, Huasheng
    VACUUM, 2020, 173
  • [29] Resynthesis and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 from spent cathode material of lithium-ion batteries
    Liu, Pengcheng
    Xiao, Li
    Tang, Yiwei
    Zhu, Yirong
    Chen, Han
    Chen, Yifeng
    VACUUM, 2018, 156 : 317 - 324
  • [30] Improved Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode with Different Carbon Additives for Lithium-ion Batteries
    Chen, Xiaolan
    Lu, Wanzheng
    Chen, Chen
    Xue, Mingzhe
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 296 - 304