Improving kernel-based nonparametric regression for circular-linear data

被引:0
|
作者
Tsuruta, Yasuhito [1 ]
Sagae, Masahiko [2 ]
机构
[1] Univ Nagano, Fac Global Management Studies, 8-49-7 Miwa, Nagano, Nagano 3808525, Japan
[2] Kanazawa Univ, Sch Econ, Kakumamachi, Kanazawa, Ishikawa 9201192, Japan
关键词
Circular-linear data; Nonparametric regression; Local polynomial regression; Kernel function; DENSITY-ESTIMATION;
D O I
10.1007/s42081-022-00145-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss kernel-based nonparametric regression where a predictor has support on a circle and a responder has support on a real line. Nonparametric regression is used in analyzing circular-linear data because of its flexibility. However, nonparametric regression is generally less accurate than an appropriate parametric regression for a population model. Considering that statisticians need more accurate nonparametric regression models, we investigate the performance of sine series local polynomial regression while selecting the most suitable kernel class. The asymptotic result shows that higher-order estimators reduce conditional bias; however, they do not improve conditional variance. We show that higher-order estimators improve the convergence rate of the weighted conditional mean integrated square error. We also prove the asymptotic normality of the estimator. We conduct a numerical experiment to examine a small sample of characteristics of the estimator in scenarios wherein the error term is homoscedastic or heterogeneous. The result shows that choosing a higher degree improves performance under the finite sample in homoscedastic or heterogeneous scenarios. In particular, in some scenarios where the regression function is wiggly, higher-order estimators perform significantly better than local constant and linear estimators.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 50 条
  • [41] KERNEL-BASED PLS REGRESSION CROSS-VALIDATION AND APPLICATIONS TO SPECTRAL DATA
    LINDGREN, F
    GELADI, P
    WOLD, S
    JOURNAL OF CHEMOMETRICS, 1994, 8 (06) : 377 - 389
  • [42] NONPARAMETRIC FILTERING OF THE REALIZED SPOT VOLATILITY: A KERNEL-BASED APPROACH
    Kristensen, Dennis
    ECONOMETRIC THEORY, 2010, 26 (01) : 60 - 93
  • [43] Kernel-Based Hybrid Random Fields for Nonparametric Density Estimation
    Freno, Antonino
    Trentin, Edmondo
    Gori, Marco
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 427 - 432
  • [44] Assessing additivity in nonparametric models uA kernel-based method
    Wang, Xiaoming
    Carriere, Keumhee C.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 632 - 655
  • [45] Kernel-based local order estimation of nonlinear nonparametric systems
    Zhao, Wenxiao
    Chen, Han-Fu
    Bai, Er-wei
    Li, Kang
    AUTOMATICA, 2015, 51 : 243 - 254
  • [46] Nonparametric Basis Pursuit via Sparse Kernel-Based Learning
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (04) : 112 - 125
  • [47] On kernel nonparametric regression designed for complex survey data
    Torsten Harms
    Pierre Duchesne
    Metrika, 2010, 72 : 111 - 138
  • [48] On kernel nonparametric regression designed for complex survey data
    Harms, Torsten
    Duchesne, Pierre
    METRIKA, 2010, 72 (01) : 111 - 138
  • [49] Nonparametric Kernel Regression and Its Real Data Application
    Toupal, Tomas
    Vavra, Frantisek
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 813 - 818
  • [50] Local linear kernel estimation for discontinuous nonparametric regression functions
    Gao, JT
    Pettitt, AN
    Wolff, RCL
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (12) : 2871 - 2894