Improving kernel-based nonparametric regression for circular-linear data

被引:0
|
作者
Tsuruta, Yasuhito [1 ]
Sagae, Masahiko [2 ]
机构
[1] Univ Nagano, Fac Global Management Studies, 8-49-7 Miwa, Nagano, Nagano 3808525, Japan
[2] Kanazawa Univ, Sch Econ, Kakumamachi, Kanazawa, Ishikawa 9201192, Japan
关键词
Circular-linear data; Nonparametric regression; Local polynomial regression; Kernel function; DENSITY-ESTIMATION;
D O I
10.1007/s42081-022-00145-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss kernel-based nonparametric regression where a predictor has support on a circle and a responder has support on a real line. Nonparametric regression is used in analyzing circular-linear data because of its flexibility. However, nonparametric regression is generally less accurate than an appropriate parametric regression for a population model. Considering that statisticians need more accurate nonparametric regression models, we investigate the performance of sine series local polynomial regression while selecting the most suitable kernel class. The asymptotic result shows that higher-order estimators reduce conditional bias; however, they do not improve conditional variance. We show that higher-order estimators improve the convergence rate of the weighted conditional mean integrated square error. We also prove the asymptotic normality of the estimator. We conduct a numerical experiment to examine a small sample of characteristics of the estimator in scenarios wherein the error term is homoscedastic or heterogeneous. The result shows that choosing a higher degree improves performance under the finite sample in homoscedastic or heterogeneous scenarios. In particular, in some scenarios where the regression function is wiggly, higher-order estimators perform significantly better than local constant and linear estimators.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 50 条
  • [1] Improving kernel-based nonparametric regression for circular–linear data
    Yasuhito Tsuruta
    Masahiko Sagae
    Japanese Journal of Statistics and Data Science, 2022, 5 : 111 - 131
  • [2] Inverse Circular-Linear/Linear-Circular Regression
    Kim, Sungsu
    Sengupta, Ashis
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4772 - 4782
  • [3] A semiparametric Bayesian model for circular-linear regression
    George, Barbara Jane
    Ghosh, Kaushik
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2006, 35 (04) : 911 - 923
  • [4] A nonparametric circular-linear multivariate regression model with a rule-of-thumb bandwidth selector
    Qin, Xu
    Zhang, Jiang-She
    Yan, Xiao-Dong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) : 3048 - 3055
  • [5] Asymmetric circular-linear multivariate regression models with applications to environmental data
    SenGupta, Ashis
    Ugwuowo, Fidelis I.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2006, 13 (03) : 299 - 309
  • [6] Asymmetric circular-linear multivariate regression models with applications to environmental data
    Ashis SenGupta
    Fidelis I. Ugwuowo
    Environmental and Ecological Statistics, 2006, 13 : 299 - 309
  • [7] Kernel-Based Mixture of Experts Models For Linear Regression
    Santarcangelo, Joseph
    Zhang, Xiao-Ping
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1526 - 1529
  • [8] Reproducing kernel-based functional linear expectile regression
    Liu, Meichen
    Pietrosanu, Matthew
    Liu, Peng
    Jiang, Bei
    Zhou, Xingcai
    Kong, Linglong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 241 - 266
  • [9] NONPARAMETRIC BAYES KERNEL-BASED PRIORS FOR FUNCTIONAL DATA ANALYSIS
    MacLehose, Richard F.
    Dunson, David B.
    STATISTICA SINICA, 2009, 19 (02) : 611 - 629
  • [10] Kernel-based linear classification on categorical data
    Chen, Lifei
    Ye, Yanfang
    Guo, Gongde
    Zhu, Jianping
    SOFT COMPUTING, 2016, 20 (08) : 2981 - 2993