Stochastic simulation method for linearly implicit ordinary differential equations

被引:0
|
作者
Guias, Flavius [1 ]
机构
[1] Dortmund Univ Appl Sci & Arts, Sonnenstr 96, D-44139 Dortmund, Germany
关键词
stochastic simulation method; Markov jump processes; linearly implicit differential equations;
D O I
10.1109/MCSI.2015.52
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Numerical schemes based on the simulation of suitable Markov jump processes such as the stochastic direct simulation method and its improved variants have shown to be a good alternative to deterministic solvers when applied to semi-discrete approximations of time-dependent partial differential equations. Moreover, in contrast to deterministic explicit solvers, this class of methods turns out to be stable also on nonuniform grids, a feature which was demonstrated by applications to moving cell methods in one space dimension. In this paper we present a modified scheme based on the same basic principle, suited for approximating linearly implicit ordinary differential equations of the form Au' = F(u). They can arise for example in the context of finite-element discretizations of the corresponding partial differential equations. The results of the numerical experiments show that methods based on the principle of stochastic simulation are able to handle also this type of problems and can motivate further research in this direction, especially for more complex, higher-dimensional problems with relevant applications.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 50 条
  • [21] Implicit ordinary differential equations: bifurcations and sharpening of equivalence
    Bogaevsky, A.
    IZVESTIYA MATHEMATICS, 2014, 78 (06) : 1063 - 1078
  • [22] On approximate implicit Taylor methods for ordinary differential equations
    Baeza, Antonio
    Burger, Raimund
    del Carmen Marti, Maria
    Mulet, Pep
    Zorio, David
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [23] ENVELOPE SOLUTIONS FOR IMPLICIT ORDINARY DIFFERENTIAL-EQUATIONS
    GILBERT, J
    LIGHT, WA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) : 49 - 61
  • [24] On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations
    Elishan Braun
    Werner M. Seiler
    Matthias Seiß
    Mathematics in Computer Science, 2020, 14 : 281 - 293
  • [25] On approximate implicit Taylor methods for ordinary differential equations
    Antonio Baeza
    Raimund Bürger
    María del Carmen Martí
    Pep Mulet
    David Zorío
    Computational and Applied Mathematics, 2020, 39
  • [26] On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations
    Braun, Elishan
    Seiler, Werner M.
    Seiss, Matthias
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (02) : 281 - 293
  • [27] Symbolic methods for systems of implicit ordinary differential equations
    Schlacher, K
    Kugi, A
    MECHANICS OF STRUCTURES AND MACHINES, 2002, 30 (01): : 103 - 121
  • [28] Linear Ordinary Differential Equations with Linearly Correlated Boundary Values
    Sanchez Ibanez, Daniel
    Esmi, Estevao
    Barros, Laecio C.
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [29] DIFFERENCE METHODS FOR STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS
    FRANKLIN, JN
    MATHEMATICS OF COMPUTATION, 1965, 19 (92) : 552 - &
  • [30] ORDINARY MATRIX DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
    SIBUL, LH
    COMSTOCK, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 508 - &