Hemodynamic Monitoring Using Switching Autoregressive Dynamics of Multivariate Vital Sign Time Series

被引:0
|
作者
Lehman, Li-wei H. [1 ]
Nemati, Shamim [2 ]
Mark, Roger G. [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Emory Univ, Atlanta, GA 30322 USA
来源
2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC) | 2015年 / 42卷
关键词
MANAGEMENT;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a critical care setting, shock and resuscitation end-points are often defined based on arterial blood pressure values. Patient-specific fluctuations and interactions between heart rate (HR) and blood pressure (BP), however, may provide additional prognostic value to stratify individual patients' risks for adverse outcomes at different blood pressure targets. In this work, we use the switching autoregressive (SVAR) dynamics inferred from the multivariate vital sign time series to stratify mortality risks of intensive care units (ICUs) patients receiving vasopressor treatment. We model vital sign observations as generated from latent states from an autoregressive Hidden Markov Model (AR-HMM) process, and use the proportion of time patients stayed in different latent states to predict outcome. We evaluate the performance of our approach using minute-by-minute HR and mean arterial BP (MAP) of an ICU patient cohort while on vasopressor treatment. Our results indicate that the bivariate HR/MAP dynamics (AUC 0.74 [0.64, 0.84]) contain additional prognostic information beyond the MAP values (AUC 0.53 [0.42, 0.63]) in mortality prediction. Further HR/MAP dynamics achieved better performance among a subgroup of patients in a low MAP range (median MAP < 65 mmHg) while on pressors. A realtime implementation of our approach may provide clinicians a tool to quantify the effectiveness of interventions and to inform treatment decisions.
引用
收藏
页码:1065 / 1068
页数:4
相关论文
共 50 条
  • [31] Monitoring the mean of multivariate financial time series
    Garthoff, Robert
    Golosnoy, Vasyl
    Schmid, Wolfgang
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2014, 30 (03) : 328 - 340
  • [32] Dynamics extraction in multivariate biomedical time series
    R. Silipo
    G. Deco
    R. Vergassola
    H. Bartsch
    Biological Cybernetics, 1998, 79 : 15 - 27
  • [33] Dynamics extraction in multivariate biomedical time series
    Silipo, R
    Deco, G
    Vergassola, R
    Bartsch, H
    BIOLOGICAL CYBERNETICS, 1998, 79 (01) : 15 - 27
  • [34] Structural Change Monitoring for Random Coefficient Autoregressive Time Series
    Li, Fuxiao
    Tian, Zheng
    Qi, Peiyan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (04) : 996 - 1009
  • [35] Periodic Copula Autoregressive Model Designed to Multivariate Streamflow Time Series Modelling
    de Almeida Pereira, Guilherme Armando
    Veiga, Alvaro
    WATER RESOURCES MANAGEMENT, 2019, 33 (10) : 3417 - 3431
  • [36] Periodic Copula Autoregressive Model Designed to Multivariate Streamflow Time Series Modelling
    Guilherme Armando de Almeida Pereira
    Álvaro Veiga
    Water Resources Management, 2019, 33 : 3417 - 3431
  • [37] Robust bootstrap prediction intervals for univariate and multivariate autoregressive time series models
    Beyaztas, Ufuk
    Shang, Han Lin
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (05) : 1179 - 1202
  • [38] Adjustment models for multivariate geodetic time series with vector-autoregressive errors
    Kargoll, Boris
    Dorndorf, Alexander
    Omidalizarandi, Mohammad
    Paffenholz, Jens-Andre
    Alkhatib, Hamza
    JOURNAL OF APPLIED GEODESY, 2021, 15 (03) : 243 - 267
  • [39] TESTING FOR A UNIT-ROOT NONSTATIONARITY IN MULTIVARIATE AUTOREGRESSIVE TIME-SERIES
    FOUNTIS, NG
    DICKEY, DA
    ANNALS OF STATISTICS, 1989, 17 (01): : 419 - 428
  • [40] Robust segmentation of switching dynamics in time series
    Feng, L
    Chon, KH
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 13 - 14