Perspectives on the process intensification of CO2 capture and utilization

被引:32
|
作者
Pahija, Ergys [1 ]
Golshan, Shahab [2 ]
Blais, Bruno [2 ]
Boffito, Daria Camilla [1 ]
机构
[1] Ecole Polytech Montreal, Stn Ctr Ville, Dept Chem Engn, POB 6079, Montreal, QC H3C 3A7, Canada
[2] Ecole Polytech Montreal, Stn Ctr Ville, Dept Chem Engn, Res Unit Ind Flows Proc URPEI, POB 6079, Montreal, QC H3C 3A7, Canada
关键词
Carbon capture and utilization; Process intensification; Rotating packed bed; Catalysis; Electrification; 2010; MSC; ROTATING PACKED-BED; CARBON-DIOXIDE CAPTURE; LIQUID FLOW; MASS-TRANSFER; CATALYTIC-HYDROGENATION; PRESSURE-DROP; GAS; ABSORPTION; REACTOR; STORAGE;
D O I
10.1016/j.cep.2022.108958
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon capture and utilization technologies require research and development to be implemented commercially. Process intensification (PI) technologies will help reduce the cost gap between sustainable technologies exploiting CO2 and traditional processes. In this manuscript, we present the application of the most promising PI technologies for carbon capture and conversion, their limitations, and research directions to overcome technical and economic challenges. We review different carbon capture technologies (post-combustion, pre-combustion and oxy-fuel), with a focus on rotating packed bed (RPB) and membranes being the most common, including the experimental and modeling methods used to study these technologies and their limitations. Additionally, we discuss other PI separation technologies that can be implemented for carbon capture. Among carbon utilization technologies, we present advances and future research directions of PI applied to catalytic electrochemical and biological processes, and plasma technologies. Computer-aided modeling of PI technologies provide an inexpensive approach to maximize yield before experimental testing and scale-up.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Special issue: CO2: capture of, utilization of, and degradation into
    Nakano, Koji
    Hoshino, Yu
    Numata, Keiji
    Tanaka, Keiji
    POLYMER JOURNAL, 2021, 53 (01) : 1 - 2
  • [32] Carbonic anhydrase for CO2 capture, conversion and utilization
    Talekar, Sachin
    Jo, Byung Hoon
    Dordick, Jonathan S.
    Kim, Jungbae
    CURRENT OPINION IN BIOTECHNOLOGY, 2022, 74 : 230 - 240
  • [33] Recent Progress in the Integration of CO2 Capture and Utilization
    Ning, Huanghao
    Li, Yongdan
    Zhang, Cuijuan
    MOLECULES, 2023, 28 (11):
  • [34] Introduction to CO2 capture, utilization and storage (CCUS)
    Wang, Qiang
    Pfeiffer, Heriberto
    Amal, Rose
    O'Hare, Dermot
    REACTION CHEMISTRY & ENGINEERING, 2022, 7 (03): : 487 - 489
  • [35] Special issue: CO2: capture of, utilization of, and degradation into
    Koji Nakano
    Yu Hoshino
    Keiji Numata
    Keiji Tanaka
    Polymer Journal, 2021, 53 : 1 - 2
  • [36] Sorption direct air capture with CO2 utilization
    Jiang, L.
    Liu, W.
    Wang, R. Q.
    Gonzalez-Diaz, A.
    Rojas-Michaga, M. F.
    Michailos, S.
    Pourkashanian, M.
    Zhang, X. J.
    Font-Palma, C.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2023, 95
  • [37] CO2 Capture, Utilization and Storage: Catalysts Design
    Liotta, Leonarda Francesca
    Wu, Hongjing
    CATALYSTS, 2024, 14 (01)
  • [38] Prospects for petcoke utilization with CO2 capture in Mexico
    Font-Palma, Carolina
    Gonzalez Diaz, Abigail
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3517 - 3523
  • [39] Limits to Paris compatibility of CO2 capture and utilization
    de Kleijne, Kiane
    Hanssen, Steef, V
    van Dinteren, Lester
    Huijbregts, Mark A. J.
    van Zelm, Rosalie
    de Coninck, Heleen
    ONE EARTH, 2022, 5 (02): : 168 - 185
  • [40] Research progress on CO2 capture and utilization technology
    Fu, Lipei
    Ren, Zhangkun
    Si, Wenzhe
    Ma, Qianli
    Huang, Weiqiu
    Liao, Kaili
    Huang, Zhoulan
    Wang, Yu
    Li, Junhua
    Xu, Peng
    JOURNAL OF CO2 UTILIZATION, 2022, 66