Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet

被引:76
|
作者
Terzo, Simona [1 ,2 ]
Mule, Flavia [2 ]
Caldara, Gaetano Felice [2 ]
Baldassano, Sara [2 ]
Puleio, Roberto [3 ]
Vitale, Maria [3 ]
Cassata, Giovanni [3 ]
Ferrantelli, Vincenzo [3 ]
Amato, Antonella [2 ]
机构
[1] Univ Palermo, Dept Expt Biomed & Clin Neurosci BioNec, Via Vespro 129, I-90127 Palermo, Italy
[2] Univ Palermo, Dept Biol Chem Pharmaceut Sci & Technol STEBICEF, Viale Sci,Edificio 16, I-90128 Palermo, Italy
[3] Ist Zooprofilatt Sperimentale Sicilia A Mirri, Via Gino Marinuzzi 3, I-90129 Palermo, Italy
关键词
obesity-related inflammation; pistachio intake; gut microbiota; HFD mice; adipose tissue; INDUCED OBESITY; INTESTINAL PERMEABILITY; INSULIN-RESISTANCE; METABOLIC SYNDROME; IN-VITRO; INDUCTION; PATHWAY; HEALTH; EXPRESSION; APOPTOSIS;
D O I
10.3390/ijms21010365
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-fat diet (HFD) induces inflammation and microbial dysbiosis, which are components of the metabolic syndrome. Nutritional strategies can be a valid tool to prevent metabolic and inflammatory diseases. The aim of the present study was to evaluate if the chronic intake of pistachio prevents obesity-associated inflammation and dysbiosis in HFD-fed mice. Three groups of male mice (four weeks old; n = 8 per group) were fed for 16 weeks with a standard diet (STD), HFD, or HFD supplemented with pistachios (HFD-P; 180 g/kg of HFD). Serum, hepatic and adipose tissue inflammation markers were analyzed in HFD-P animals and compared to HFD and STD groups. Measures of inflammation, obesity, and intestinal integrity were assessed. Fecal samples were collected for gut microbiota analysis. Serum TNF-alpha and IL-1 beta levels were significantly reduced in HFD-P compared to HFD. Number and area of adipocytes, crown-like structure density, IL-1 beta, TNF-alpha, F4-80, and CCL-2 mRNA expression levels were significantly reduced in HFD-P subcutaneous and visceral adipose tissues, compared to HFD. A significant reduction in the number of inflammatory foci and IL-1 beta and CCL-2 gene expression was observed in the liver of HFD-P mice compared with HFD. Firmicutes/Bacteroidetes ratio was reduced in HFD-P mice in comparison to the HFD group. A pistachio diet significantly increased abundance of healthy bacteria genera such as Parabacteroides, Dorea, Allobaculum, Turicibacter, Lactobacillus, and Anaeroplasma, and greatly reduced bacteria associated with inflammation, such as Oscillospira, Desulfovibrio, Coprobacillus, and Bilophila. The intestinal conductance was lower in HFD-P mice than in the HFD mice, suggesting an improvement in the gut barrier function. The results of the present study showed that regular pistachio consumption improved inflammation in obese mice. The positive effects could be related to positive modulation of the microbiota composition.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats
    Li, Pan
    Huang, Jianzhao
    Xiao, Nan
    Cai, Xin
    Yang, Yunyun
    Deng, Jiewei
    Zhang, Lian-Hui
    Du, Bing
    FOOD & FUNCTION, 2020, 11 (07) : 5827 - 5841
  • [42] Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats
    Li, Pan
    Huang, Jianzhao
    Xiao, Nan
    Cai, Xin
    Yang, Yunyun
    Deng, Jiewei
    Zhang, Lian-Hui
    Du, Bing
    Food and Function, 2020, 11 (07): : 5827 - 5841
  • [43] Effect of A Polyphenol-Rich Canarium album Extract on the Composition of the Gut Microbiota of Mice Fed a High-Fat Diet
    Zhang, Ning-Ning
    Guo, Wen-Hui
    Hu, Han
    Zhou, A-Rong
    Liu, Qing-Pei
    Zheng, Bao-Dong
    Zeng, Shao-Xiao
    MOLECULES, 2018, 23 (09):
  • [44] High-fat diet alters gut microbiota physiology in mice
    Daniel, Hannelore
    Gholami, Amin Moghaddas
    Berry, David
    Desmarchelier, Charles
    Hahne, Hannes
    Loh, Gunnar
    Mondot, Stanislas
    Lepage, Patricia
    Rothballer, Michael
    Walker, Alesia
    Boehm, Christoph
    Wenning, Mareike
    Wagner, Michael
    Blaut, Michael
    Schmitt-Kopplin, Philippe
    Kuster, Bernhard
    Haller, Dirk
    Clavel, Thomas
    ISME JOURNAL, 2014, 8 (02): : 295 - 308
  • [45] Rhyolite alleviates systemic inflammation and insulin resistance concomitant with the modulation of gut microbiota in high-fat diet induced obese mice
    Mifune, H.
    Sakai, Y.
    Tajiri, Y.
    DIABETOLOGIA, 2019, 62 : S286 - S287
  • [46] The signatures of liver metabolomics and gut microbiota in high-fat diet fed mice supplemented with rhododendrol
    Li, Xiaoping
    Wang, Yu
    Yu, Chengwei
    Yao, Yexuan
    Chen, Xi
    Deng, Ze-Yuan
    Yao, Zhao
    Luo, Ting
    FOOD & FUNCTION, 2022, 13 (24) : 13052 - 13063
  • [47] Effects of Ocimum basilicum mucilage on hyperlipidemia and gut microbiota on mice fed a high-fat diet
    Nguyen-Le, Duy
    Nguyen, Cao-Tri
    Ngo-Phan, Minh -Vu
    Tran, Thuoc Linh
    Phan, Minh-Duy
    Unno, Tatsuya
    Tran-Van, Hieu
    BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE, 2023, 30
  • [48] Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice
    Wang, Qiong
    Zhang, Ling
    He, Yalun
    Zeng, Lirong
    He, Juncheng
    Yang, Yang
    Zhang, Tongcun
    JOURNAL OF FUNCTIONAL FOODS, 2021, 86
  • [49] Gut microbiota mediates positive effects of liraglutide on dyslipidemia in mice fed a high-fat diet
    Zhao, Li
    Qiu, Yue
    Zhang, Panpan
    Wu, Xunan
    Zhao, Zhicong
    Deng, Xia
    Yang, Ling
    Wang, Dong
    Yuan, Guoyue
    FRONTIERS IN NUTRITION, 2022, 9
  • [50] Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet
    Lu, Chenyang
    Sun, Tingting
    Li, Yanyan
    Zhang, Dijun
    Zhou, Jun
    Su, Xiurong
    FRONTIERS IN MICROBIOLOGY, 2017, 8