Topology versus Anderson localization: Nonperturbative solutions in one dimension

被引:42
|
作者
Altland, Alexander [1 ]
Bagrets, Dmitry [1 ]
Kamenev, Alex [2 ,3 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Univ Minnesota, WI Fine Theoret Phys Inst, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 08期
关键词
QUANTUM HALL TRANSITION; SIGMA-MODEL; WIRES; SUPERCONDUCTORS; DELOCALIZATION; DISORDER; CHAINS;
D O I
10.1103/PhysRevB.91.085429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g, chi) representing localization and topological properties, respectively. Certain critical values of chi (half-integer for Z classes, or zero for Z(2) classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z(2) classes we uncover a hidden supersymmetry, present at the quantum critical point.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] NUMERICAL TEST OF LOCALIZATION IN ONE DIMENSION
    CHAHOUD, J
    FERRARI, L
    GIUNCHI, G
    RUSSO, G
    LETTERE AL NUOVO CIMENTO, 1975, 12 (11): : 402 - 404
  • [22] Theory of directed localization in one dimension
    Brouwer, PW
    Silvestrov, PG
    Beenakker, CWJ
    PHYSICAL REVIEW B, 1997, 56 (08) : R4333 - R4335
  • [23] LOCALIZATION AND INTERACTION IN ONE-DIMENSION
    APEL, W
    RICE, TM
    HELVETICA PHYSICA ACTA, 1983, 56 (1-3): : 35 - 35
  • [24] Anderson localization in one-dimensional systems signified by localization tensor
    Tao, Yaqi
    PHYSICS LETTERS A, 2022, 455
  • [25] Antiferromagnetism of the half-filled Anderson lattice in one dimension
    Papatriantafillou, C
    Kioussis, N
    Park, SH
    PHYSICAL REVIEW B, 1999, 60 (19): : 13355 - 13360
  • [26] EXACT SOLUTION OF A MODIFIED PERIODIC ANDERSON MODEL IN ONE DIMENSION
    KAGA, H
    PHYSICS LETTERS A, 1983, 99 (09) : 445 - 449
  • [27] REAL SPACE RENORMALIZATION AND THE ANDERSON MODEL IN ONE-DIMENSION
    LAMBERT, CJ
    PHYSICS LETTERS A, 1980, 78 (5-6) : 471 - 473
  • [28] Scaling properties of one-dimensional Anderson models in an electric field: Exponential versus factorial localization
    Weiss, M
    Kottos, T
    Geisel, T
    PHYSICAL REVIEW B, 2000, 62 (03): : 1765 - 1772
  • [29] Dynamic versus Anderson wave-packet localization
    Borovkova, Olga V.
    Lobanov, Valery E.
    Kartashov, Yaroslav V.
    Vysloukh, Victor A.
    Torner, Lluis
    PHYSICAL REVIEW A, 2015, 91 (06):
  • [30] Anderson localization versus hopping asymmetry in a disordered lattice
    Kokkinakis, E. T.
    Makris, K. G.
    Economou, E. N.
    PHYSICAL REVIEW A, 2024, 110 (05)