DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials

被引:11
|
作者
Xu, Xuemei [1 ]
Winterwerber, Pia [2 ]
Ng, David [2 ]
Wu, Yuzhou [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Hubei Key Lab Bioinorgan Chem & Mat Med, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[2] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
基金
中国国家自然科学基金;
关键词
DNA origami; Polymer nanomaterial; Inorganic nanomaterial; Programmed synthesis; Bottom-up nanofabrication; MULTISTEP ORGANIC-SYNTHESIS; NANOPARTICLE SUPERLATTICES; PLASMONIC NANOSTRUCTURES; TEMPLATED POLYMERIZATION; RADICAL POLYMERIZATION; ORIGAMI; GOLD; CRYSTALLIZATION; SHAPES; NANOTECHNOLOGY;
D O I
10.1007/s41061-020-0292-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanotechnology, based on sequence-specific DNA recognition, could allow programmed self-assembly of sophisticated nanostructures with molecular precision. Extension of this technique to the preparation of broader types of nanomaterials would significantly improve nanofabrication technique to lower nanometer scale and even achieve single molecule operation. Using such exquisite DNA nanostructures as templates, chemical synthesis of polymer and inorganic nanomaterials could also be programmed with unprecedented accuracy and flexibility. This review summarizes recent advances in the synthesis and assembly of polymer and inorganic nanomaterials using DNA nanostructures as templates, and discusses the current challenges and future outlook of DNA templated nanotechnology.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] DNA-programmed chemistry toward macrocycle libraries for drug discovery
    Briggs, Timothy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [32] Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials
    Ma, Yurou
    Yang, Xiangdong
    Wei, Yurong
    Yuan, Quan
    CHINESE JOURNAL OF CHEMISTRY, 2016, 34 (03) : 291 - 298
  • [33] Modular DNA-programmed assembly of linear and branched conjugated nanostructures
    Gothelf, KV
    Thomsen, A
    Nielsen, M
    Cló, E
    Brown, RS
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (04) : 1044 - 1046
  • [34] DNA-programmed spatial screening of carbohydrate-lectin interactions
    Scheibe, Christian
    Bujotzek, Alexander
    Dernedde, Jens
    Weber, Marcus
    Seitz, Oliver
    CHEMICAL SCIENCE, 2011, 2 (04) : 770 - 775
  • [35] Dynamic Manipulation of DNA-Programmed Crystals Embedded in a Polyelectrolyte Hydrogel
    Kubiak, Joshua M.
    Morje, Amogh P.
    Lewis, Diana J.
    Wilson, Sara L.
    Macfarlane, Robert J.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (09) : 11215 - 11223
  • [36] DNA-Programmed Lipid Nanoreactors for Synthesis of Carbohydrate Mimetics by Fusion of Aqueous Sub-attoliter Compartments
    Tian, Xinwei
    Risgaard, Nikolaj Alexander
    Loffler, Philipp M. G.
    Vogel, Stefan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (36) : 19633 - 19641
  • [37] Synthesis of inorganic nanomaterials
    Rao, C. N. R.
    Vivekchand, S. R. C.
    Biswas, Kanishka
    Govindaraj, A.
    DALTON TRANSACTIONS, 2007, (34) : 3728 - 3749
  • [38] Synthesis of inorganic nanomaterials
    CSIR Centre of Excellence in Chemistry, Chemistry and Physics of Materials Unit, DST Unit on Nanoscience, Jakkur P. O., Bangalore 560064, India
    不详
    Dalton Trans., 2007, 34 (3728-3749):
  • [39] Investigation for Regulation of a DNA-Programmed Bimetallic Nanozyme and Its Biosensing Applications
    Xiao, Jiaxuan
    Yang, Xiaofeng
    Zhang, Xinshuo
    Niu, Xiangheng
    Guo, Yujia
    Zhu, Nuanfei
    Zeng, Kun
    Zhang, Zhen
    ANALYTICAL CHEMISTRY, 2024, 96 (49) : 19796 - 19802
  • [40] Nanoparticle arrangement by DNA-programmed self-assembly for catalyst applications
    Maeda, Y.
    Akita, T.
    Date, M.
    Takagi, A.
    Matsumoto, T.
    Fujitani, T.
    Kohyama, M.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)