Hybrid Neural Network Model for Web Document Clustering

被引:1
|
作者
Hemalatha, M. [1 ]
Srinivas, Sathya D. [2 ]
机构
[1] Karpagam Univ, Dept Comp Sci, Coimbatore 641021, Tamil Nadu, India
[2] Karpagam Univ, Dept Comp Appl, Coimbatore 641021, Tamil Nadu, India
关键词
Singular Value Decomposition; Principle component Analysis; Web document Clustering; Multilayer Neural Network;
D O I
10.1109/ICADIWT.2009.5273918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The popularity of the internet has caused a massive increase in the amount of web pages. The information explosion has led to a growing challenge for information retrieval systems. Document clustering becomes an important process for helping the information retrieval systems organize this vast amount of data. It is believed that grouping similar documents together into clusters will help the users find relevant information quicker, and will allow them to focus their search in the appropriate direction. Feature selection is an important task in data analysis. It is useful to limit redundancy of features, promote comprehensibility, and find clusters (or structures) hidden in high dimensional data. This paper addresses the problems of document mining related with web page clustering and classification, using the Principle component Analysis for Feature Vector Selection. Singular Value Decomposition is used to find the similarity measure and Multi layer neural network used to improve the performance of the clustering algorithm. We illustrate and discuss the system performance by experimental evaluation results.
引用
收藏
页码:531 / +
页数:3
相关论文
共 50 条
  • [31] DeepWSC: A Novel Framework with Deep Neural Network for Web Service Clustering
    Zou, Guobing
    Qin, Zhen
    He, Qiang
    Wang, Pengwei
    Zhang, Bofeng
    Gan, Yanglan
    2019 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2019), 2019, : 434 - 436
  • [32] Comparison of neural models for document clustering
    Guerrero-Bote, VP
    López-Pujalte, C
    de Moya-Anegón, F
    Herrero-Solana, V
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2003, 34 (2-3) : 287 - 305
  • [33] A New Hybrid Approach for Document Clustering
    Ismael, Osama
    2017 13TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2017, : 291 - 296
  • [34] Web search result refinement by document clustering
    Tsui, Ming Hei
    Lim, Bresley
    Shi, Daming
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 2224 - 2229
  • [35] A probabilistic relational approach for web document clustering
    Fersini, E.
    Messina, E.
    Archetti, F.
    INFORMATION PROCESSING & MANAGEMENT, 2010, 46 (02) : 117 - 130
  • [36] Web document clustering using hyperlink structures
    He, X
    Zha, HY
    Ding, CHQ
    Simon, HD
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 41 (01) : 19 - 45
  • [37] Digital Web Library of a Website with Document Clustering
    Mahecha-Nieto, Isabel
    Leon, Elizabeth
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2010, 2010, 6433 : 214 - 223
  • [38] Unsupervised clustering for nontextual web document classification
    Chan, SWK
    Chong, MWC
    DECISION SUPPORT SYSTEMS, 2004, 37 (03) : 377 - 396
  • [39] Mining a Web citation database for document clustering
    He, Y
    Hui, SC
    Fong, ACM
    APPLIED ARTIFICIAL INTELLIGENCE, 2002, 16 (04) : 283 - 302
  • [40] Web Document Categorization by Support Vector Clustering
    Shi, Daming
    Tsui, Ming Hei
    Liu, Jigang
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1482 - 1487