Moduli of log mixed Hodge structures

被引:6
|
作者
Kato, Kazuya [1 ]
Nakayama, Chikara [2 ]
Usui, Sampei [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Tokyo Inst Technol, Grad Sch Sci & Engn, Meguro Ku, Tokyo 1528551, Japan
[3] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
关键词
Hodge theory; log geometry; Griffiths domain; toroidal compactification; log mixed Hodge structure; admissible normal function; DEGENERATION;
D O I
10.3792/pjaa.86.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We announce the construction of toroidal partial compactifications of the moduli spaces of mixed Hodge structures with polarized graded quotients. They are moduli spaces of log mixed Hodge structures with polarized graded quotients. We include an application to the analyticity of zero loci of normal functions.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 50 条
  • [21] GEOMETRIC POLARIZED LOG HODGE STRUCTURES WITH A BASE OF LOG RANK ONE
    Fujisawa, Taro
    Nakayama, Chikara
    KODAI MATHEMATICAL JOURNAL, 2020, 43 (01) : 57 - 83
  • [22] DEGENERATION OF MIXED HODGE-STRUCTURES
    ZUCKER, S
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 283 - 293
  • [23] Geometric transitions and mixed Hodge structures
    Diaconescu, Duiliu-Emanuel
    Donagi, Ron
    Pantev, Tony
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 11 (01) : 65 - 89
  • [24] Mixed Hodge Structures on Alexander Modules
    Elduque, Eva
    Geske, Christian
    Cueto, Moises Herradoen
    Maxim, Laurentiu G.
    Wang, Botong
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 296 (1479) : 1 - 128
  • [25] POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES
    Fujisawa, Taro
    JOURNAL OF SINGULARITIES, 2014, 8 : 146 - 193
  • [26] Mixed Hodge structures and Siegel operators
    Ma, Shouhei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (816): : 161 - 199
  • [27] Mixed Hodge structures and Weierstrass σ-function
    Banaszak, Grzegorz
    Milewski, Jan
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (13-14) : 551 - 555
  • [28] CATEGORY OF MIXED PLECTIC HODGE STRUCTURES
    Bannai, Kenichi
    Hagihara, Kei
    Kobayashi, Shinichi
    Yamada, Kazuki
    Yamamoto, Shuji
    Yasuda, Seidai
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (01) : 31 - 76
  • [29] Asymptotics of degenerations of mixed Hodge structures
    Hayama, Tatsuki
    Pearlstein, Gregory
    ADVANCES IN MATHEMATICS, 2015, 273 : 380 - 420
  • [30] Mixed Hodge structures and renormalization in physics
    Bloch, Spencer
    Kreimer, Dirk
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2008, 2 (04) : 637 - 718