Multiscale Modeling of Light Absorption in Tissues: Limitations of Classical Homogenization Approach

被引:14
|
作者
Mottin, Stephane [1 ]
Panasenko, Grigory [2 ]
Ganesh, S. Sivaji [3 ]
机构
[1] Univ St Etienne, Univ Lyon, CNRS, UMR5516, St Etienne, France
[2] Univ St Etienne, Univ Lyon, LAMUSE, St Etienne, France
[3] Indian Inst Technol, Bombay, Maharashtra, India
来源
PLOS ONE | 2010年 / 5卷 / 12期
关键词
MULTICOMPONENT HOMOGENIZATION; DISCRETE ABSORBERS; BLOOD-VESSELS; RESPONSES; OPERATOR;
D O I
10.1371/journal.pone.0014350
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In biophotonics, the light absorption in a tissue is usually modeled by the Helmholtz equation with two constant parameters, the scattering coefficient and the absorption coefficient. This classic approximation of "haemoglobin diluted everywhere" (constant absorption coefficient) corresponds to the classical homogenization approach. The paper discusses the limitations of this approach. The scattering coefficient is supposed to be constant (equal to one) while the absorption coefficient is equal to zero everywhere except for a periodic set of thin parallel strips simulating the blood vessels, where it is a large parameter omega. The problem contains two other parameters which are small: epsilon, the ratio of the distance between the axes of vessels to the characteristic macroscopic size, and delta, the ratio of the thickness of thin vessels and the period. We construct asymptotic expansion in two cases: epsilon -> 0, omega -> infinity, delta -> 0, omega delta -> infinity, epsilon(2)omega delta -> 0, and epsilon -> 0, omega -> infinity, delta -> 0, epsilon(2)omega delta(2) -> infinity and prove that in the first case the classical homogenization (averaging) of the differential equation is true while in the second case it is wrong. This result may be applied in the biomedical optics, for instance, in the modeling of the skin and cosmetics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A parallel, multiscale approach to reservoir modeling
    Omer Inanc Tureyen
    Jef Caers
    Computational Geosciences, 2005, 9 : 75 - 98
  • [32] Towards a Multiscale Approach To Cybersecurity Modeling
    Hogan, Emilie
    Hui, Peter
    Choudhury, Sutanay
    Halappanavar, Mahantesh
    Oler, Kiri
    Joslyn, Cliff
    2013 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), 2013, : 80 - 85
  • [33] A multiscale modeling approach to adhesive contact
    FAN KangQi *
    Science China(Physics,Mechanics & Astronomy), 2011, (09) : 1680 - 1686
  • [34] A multiscale modeling approach to adhesive contact
    Fan KangQi
    Wang WeiDong
    Zhu YingMin
    Zhang XiuYan
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (09) : 1680 - 1686
  • [35] A multiscale approach for modeling crystalline solids
    Cuitiño, AM
    Stainier, L
    Wang, GF
    Strachan, A
    Çagin, T
    Goddard, WA
    Ortiz, M
    JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 2002, 8 (2-3): : 127 - 149
  • [36] A Multiscale Approach for Modeling Atherosclerosis Progression
    Exarchos, Konstantinos P.
    Carpegianni, Clara
    Rigas, Georgios
    Exarchos, Themis P.
    Vozzi, Federico
    Sakellarios, Antonis
    Marraccini, Paolo
    Naka, Katerina
    Michalis, Lambros
    Parodi, Oberdan
    Fotiadis, Dimitrios I.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (02) : 709 - 719
  • [37] A Multiscale Modeling Approach for Carbon Nanotubes
    Sun, Yuzhou
    Wang, Jinyan
    Liew, K. M.
    MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 4201 - +
  • [39] A multiscale modeling approach for biomolecular systems
    Alan Bowling
    Mahdi Haghshenas-Jaryani
    Multibody System Dynamics, 2015, 33 : 333 - 365
  • [40] A multiscale modeling approach to adhesive contact
    KangQi Fan
    WeiDong Wang
    YingMin Zhu
    XiuYan Zhang
    Science China Physics, Mechanics and Astronomy, 2011, 54