Diversification of Metallic Molecules through Derivatization Chemistry of Au25 Nanoclusters

被引:35
|
作者
Cao, Yitao [1 ]
Chen, Tiankai [1 ]
Yao, Qiaofeng [1 ]
Xie, Jianping [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
关键词
PROTECTED GOLD CLUSTERS; CRYSTAL-STRUCTURE; GROWTH; NANOPARTICLES; COMPLEXES; ORIGIN;
D O I
10.1021/acs.accounts.1c00481
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CONSPECTUS: Derivatization is the fine chemistry that can produce chemical compounds from similar precursors and has been widely used in the field of organic synthesis to achieve diversification of molecular properties and functionalities. Ligand-protected metal nanoclusters (NCs) are metallic molecules with a definite molecular formula, well-defined molecular structure, and molecular-like physical and chemical properties. Unlike organic compounds, which have almost infinite species, until now only hundreds of metal NC species have been discovered, and only a few of them have been structurally resolved. Therefore, the diversification of NC species and functions is highly desirable in nanoscience and nanochemistry. As an efficient approach for generating a library of compounds from a given precursor, derivatization chemistry is not only applicable in producing new organic compounds but also a promising strategy for generating new metal NC species with intriguing properties and functions. The key to the derivatization of metal NCs is to design an efficient derivatization reaction suitable for metal NCs and spontaneously realize the customization of this special macromolecule (metallic molecule) at the atomic and molecular level. In this Account, we use the flagship thiolate-protected NC Au25SR18 (SR denotes a thiolate ligand) as a model to illustrate the derivatization chemistry of metal NCs. In the past 3 years we have developed various derivatization reactions of Au25SR18, including isomerization, redox, ligand addition, alloying, and self-assembly reactions. We discuss the mechanisms that govern these reactions to realize precise customization of the NC structure, size, surface, composition, and interactions. It is particularly noteworthy that advanced techniques such as real-time electrospray ionization mass spectrometry and NMR spectroscopy enable us to have an atomic- and molecular-level understanding of the reaction mechanisms, which will further promote our efforts to design derivatization reactions for metal NCs. Through these delicate derivatization reactions, we can produce Au25SR18 derivatives with new physical, chemical, and biological properties, including electronic structures, photoluminescence, surface reactivity, and antimicrobial properties. Finally, we provide our perspectives on the opportunities and challenges of metal NC derivatization. The derivatization chemistry of metal NCs can not only diversify the properties and functions of metal NCs but also help us understand the structure-property relationship and design principles of metal nanomaterials, which will help advance the research frontier of nanoscience toward atomic precision.
引用
收藏
页码:4142 / 4153
页数:12
相关论文
共 50 条
  • [21] Elucidating the optical spectra of [Au25(SR)18]q nanoclusters
    Juarez-Mosqueda, Rosalba
    Mpourmpakis, Giannis
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (40) : 22272 - 22282
  • [22] Modified electrodes using Au25 nanoclusters for electrochemical sensing applications
    Jang, Mi
    Azad, Uday
    Ko, Eunsol
    Lee, Dongil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [23] Temperature Dependent Time-Resolved Fluorescence in Au25 Nanoclusters
    Wen, Xiaoming
    Yu, Pyng
    Toh, Yon-Rui
    Tang, Jau
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (07) : 1412 - 1416
  • [24] High Yield Synthesis of Au25 Nanoclusters by Controlling the Reduction Process
    Jin, Shenshen
    Meng, Xiangming
    Jin, Shan
    Zhu, Manzhou
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) : 1282 - 1285
  • [25] Applications of Au25 Nanoclusters in Photon-Based Cancer Therapies
    Lockwood, Zoey A.
    Jirousek, Michael R.
    Basilion, James P.
    Burda, Clemens
    NANOMATERIALS, 2025, 15 (01)
  • [26] Kinetics of Cationic-Ligand-Exchange Reactions in Au25 Nanoclusters
    Huang, Zhong
    Ishida, Yohei
    Narita, Kunihiro
    Yonezawa, Tetsu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (31): : 18142 - 18150
  • [27] Evidence for stereoelectronic effects in ligand exchange reactions on Au25 nanoclusters
    Wang, Yanan
    Buergi, Thomas
    NANOSCALE, 2022, 14 (06) : 2456 - 2464
  • [28] Electron paramagnetic resonance in positively charged Au25 molecular nanoclusters
    Akbari-Sharbaf, Arash
    Hesari, Mahdi
    Workentin, Mark S.
    Fanchini, Giovanni
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (02):
  • [29] Carbon-carbon coupling reactions catalyzed by Au25 nanoclusters
    Li, Gao
    Jin, Rongchao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [30] Engineering ligand chemistry on Au25 nanoclusters: from unique ligand addition to precisely controllable ligand exchange
    Zhao, Jiangtao
    Ziarati, Abolfazl
    Rosspeintner, Arnulf
    Wang, Yanan
    Buergi, Thomas
    CHEMICAL SCIENCE, 2023, 14 (28) : 7665 - 7674