Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling

被引:162
|
作者
Gordon, GJ
Rockwell, GN
Jensen, RV
Rheinwald, JG
Glickman, JN
Aronson, JP
Pottorf, BJ
Nitz, MD
Richards, WG
Sugarbaker, DJ
Bueno, R
机构
[1] Harvard Univ, Div Thorac Surg, Sch Med,Thorac Surg Oncol Lab, Brigham & Womens Hosp, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Neurol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Dermatol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[5] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
来源
AMERICAN JOURNAL OF PATHOLOGY | 2005年 / 166卷 / 06期
关键词
D O I
10.1016/S0002-9440(10)62492-3
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Malignant pleural mesothelioma (MPM) is a highly lethal, poorly understood neoplasm that is typically associated with asbestos exposure. We performed transcriptional profiling using high-density oligonucleotide microarrays containing similar to 22,000 genes to elucidate potential molecular and pathobiological pathways in MPM using discarded human MPM tumor specimens (n = 40), normal lung specimens (n = 4), normal pleura specimens (n = 5), and MPM and SV40-immortalized mesothelial cell fines (n = 5). in global expression analysis using unsupervised clustering techniques, we found two potential subclasses of mesothelioma that correlated loosely with tumor histology. We also identified sets of genes with expression levels that distinguish between multiple tumor subclasses, normal and tumor tissues, and tumors with different morphologies. Microarray gene expression data were confined using quantitative reverse transcriptase-polymerase chain reaction and protein analysis for three novel candidate oncogenes (NME2, CRI1, and PDGFC) and one candidate tumor suppressor (GSN). Finally, we used bioinformatics tools (ie, software) to create and explore complex physiological pathways. Combined, all of these data may advance our understanding of mesothefioma tumorigenesis, pathobiology, or both.
引用
收藏
页码:1827 / 1840
页数:14
相关论文
共 41 条
  • [31] Large scale phenotypic screening using PRISM, integrated with functional genomic screening and transcriptional profiling accelerates target identification of cytotoxic small molecules
    Larpenteur, Kevin
    de Waal, Lucian
    Wang, Li
    Kocak, Mustafa
    Bryan, Jordan
    Bender, Samantha
    Barkho, Sulyman
    Kukurugya, Matt
    Goodale, Amy
    Paolella, Brenton
    Cho, Min
    McFarland, James
    Rothberg, Michael
    Zhu, Cong
    Trepiccio, Colin
    Tsherniak, Aviad
    Root, David
    Bennett, Bryson
    Piccioni, Federica
    Bittker, Josh
    Rong, James
    Mader, Christopher
    Stokoe, David
    Firestone, Ari
    Golub, Todd R.
    Roth, Jennifer
    MOLECULAR CANCER THERAPEUTICS, 2019, 18 (12)
  • [32] Cellular Fingerprints: A Novel Approach Using Large-Scale Cancer Cell Line Data for the Identification of Potential Anticancer Agents
    Fuellbeck, Melanie
    Dunkel, Mathias
    Hossbach, Julia
    Daniel, Peter T.
    Preissner, Robert
    CHEMICAL BIOLOGY & DRUG DESIGN, 2009, 74 (05) : 439 - 448
  • [33] Identification of two new Pmp22 mouse mutants using large-scale mutagenesis and a novel rapid mapping strategy
    Isaacs, AM
    Davies, KE
    Hunter, AJ
    Nolan, PM
    Vizor, L
    Peters, J
    Gale, DG
    Kelsell, DP
    Latham, ID
    Chase, JM
    Fisher, EMC
    Bouzyk, MM
    Potter, A
    Masih, M
    Walsh, FS
    Sims, MA
    Doncaster, KE
    Parsons, CA
    Martin, J
    Brown, SDM
    Rastan, S
    Spurr, NK
    Gray, IC
    HUMAN MOLECULAR GENETICS, 2000, 9 (12) : 1865 - 1871
  • [34] iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides
    Charoenkwan, Phasit
    Schaduangrat, Nalini
    Lio, Pietro
    Moni, Mohammad Ali
    Chumnanpuen, Pramote
    Shoombuatong, Watshara
    ACS OMEGA, 2022, : 41082 - 41095
  • [35] Drug candidate identification based on gene expression of treated cells using tensor decomposition-based unsupervised feature extraction for large-scale data
    Taguchi, Y-h.
    BMC BIOINFORMATICS, 2019, 19 (Suppl 13)
  • [36] Drug candidate identification based on gene expression of treated cells using tensor decomposition-based unsupervised feature extraction for large-scale data
    Y-h. Taguchi
    BMC Bioinformatics, 19
  • [37] Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach
    Tozlu, S.
    Girault, I.
    Vacher, S.
    Vendrell, J.
    Andrieu, C.
    Spyratos, F.
    Cohen, P.
    Lidereau, R.
    Bieche, I.
    ENDOCRINE-RELATED CANCER, 2006, 13 (04) : 1109 - 1120
  • [38] Molecular Signature of Subtypes of Non-Small-Cell Lung Cancer by Large-Scale Transcriptional Profiling: Identification of Key Modules and Genes by Weighted Gene Co-Expression Network Analysis (WGCNA)
    Niemira, Magdalena
    Collin, Francois
    Szalkowska, Anna
    Bielska, Agnieszka
    Chwialkowska, Karolina
    Reszec, Joanna
    Niklinski, Jacek
    Kwasniewski, Miroslaw
    Kretowski, Adam
    CANCERS, 2020, 12 (01)
  • [39] Building a custom large-scale panel of novel microhaplotypes for forensic identification using MiSeq and Ion S5 massively parallel sequencing systems
    de la Puente, M.
    Phillips, C.
    Xavier, C.
    Amigo, J.
    Carracedo, A.
    Parson, W.
    Lareu, M., V
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2020, 45
  • [40] Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling
    Tews, Bjoern
    Felsberg, Joerg
    Hartmann, Christian
    Kunitz, Annegret
    Hahn, Meinhard
    Toedt, Grischa
    Neben, Kai
    Hummerich, Lars
    von Deimling, Andreas
    Reifenberger, Guido
    Lichter, Peter
    INTERNATIONAL JOURNAL OF CANCER, 2006, 119 (04) : 792 - 800