Quantifying the validity and breakdown of the overdamped approximation in stochastic thermodynamics: Theory and experiment

被引:12
|
作者
Pan, Rui [1 ]
Hoang, Thai M. [2 ,7 ]
Fei, Zhaoyu [1 ]
Qiu, Tian [1 ]
Ahn, Jonghoon [3 ]
Li, Tongcang [2 ,3 ,4 ,5 ]
Quan, H. T. [1 ,6 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Purdue Quantum Ctr, W Lafayette, IN 47907 USA
[5] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[7] Sandia Natl Labs, Albuquerque, NM 87123 USA
基金
美国国家科学基金会;
关键词
FREE-ENERGY DIFFERENCES; BROWNIAN-MOTION; INSTANTANEOUS VELOCITY; FLUCTUATION THEOREM; EQUALITY; PARTICLE; WORK; INFORMATION; EQUATION;
D O I
10.1103/PhysRevE.98.052105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stochastic thermodynamics provides an important framework to explore small physical systems where thermal fluctuations are inevitable. In the studies of stochastic thermodynamics, some thermodynamic quantities, such as the trajectory work, associated with the complete Langevin equation (the Kramers equation) are often assumed to converge to those associated with the overdamped Langevin equation (the Smoluchowski equation) in the overdamped limit under the overdamped approximation. Nevertheless, a rigorous mathematical proof of the convergence of the work distributions to our knowledge has not been reported so far. Here we study the convergence of the work distributions explicitly. In the overdamped limit, we rigorously prove the convergence of the extended Fokker-Planck equations including work using a multiple timescale expansion approach. By taking the linearly dragged harmonic oscillator as an exactly solvable example, we analytically calculate the work distribution associated with the Kramers equation, and verify its convergence to that associated with the Smoluchowski equation in the overdamped limit. We quantify the accuracy of the overdamped approximation as a function of the damping coefficient. In addition, we experimentally demonstrate that the data of the work distribution of a levitated silica nanosphere agrees with the overdamped approximation in the overdamped limit, but deviates from the overdamped approximation in the low-damping case. Our work fills a gap between the stochastic thermodynamics based on the complete Langevin equation (the Kramers equation) and the overdamped Langevin equation (the Smoluchowski equation), and deepens our understanding of the overdamped approximation in stochastic thermodynamics.
引用
收藏
页数:14
相关论文
共 50 条