Investigating Laser-Induced Phase Engineering in MoS2 Transistors

被引:10
|
作者
Papadopoulos, Nikos [1 ]
Island, Joshua O. [1 ]
van der Zant, Herre S. J. [1 ]
Steele, Gary A. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
关键词
Laser patterning (LP); molybdenum disulfide; phase transition; transistors; LITHIUM ION INTERCALATION; SINGLE-LAYER; TRANSITION; DYNAMICS; GENERATION; NANOSHEETS; CHEMISTRY; EVOLUTION; CONTACTS; RAMAN;
D O I
10.1109/TED.2018.2855215
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Phase engineering of MoS2 transistors has recently been demonstrated and has led to record low contact resistances. The phase patterning of MoS2 flakes with laser radiation has also been realized via spectroscopic methods, which invites the potential of controlling the metallic and semiconducting phases of MoS2 transistors by simple light exposure. Nevertheless, the fabrication and demonstration of laser-patterned MoS2 devices starting from the metallic polymorph have not been demonstrated yet. Here, we study the effects of laser radiation on 1T/1T'-MoS2 transistors with the prospect of driving an in situ phase transition to the 2H-polymorph through light exposure. We find that although the Raman peaks of 2H-MoS2 become more prominent and the ones from the 1T/1T' phase fade after the laser exposure, the semiconducting properties of the laser-patterned devices are not fully restored, and the laser treatment ultimately leads to the degradation of the transport channel.
引用
收藏
页码:4053 / 4058
页数:6
相关论文
共 50 条
  • [41] Performance Potential and Limit of MoS2 Transistors
    Li, Xuefei
    Yang, Lingming
    Si, Mengwei
    Li, Sichao
    Huang, Mingqiang
    Ye, Peide
    Wu, Yanqing
    ADVANCED MATERIALS, 2015, 27 (09) : 1547 - +
  • [42] MoS2 Transistors Operating at Gigahertz Frequencies
    Krasnozhon, Daria
    Lembke, Dominik
    Nyffeler, Clemens
    Leblebici, Yusuf
    Kis, Andras
    NANO LETTERS, 2014, 14 (10) : 5905 - 5911
  • [43] Physical Modeling of the Hysteresis in MoS2 Transistors
    Knobloch, Theresia
    Rzepa, Gerhard
    Illarionov, Yury Yu.
    Waltl, Michael
    Schanovsky, Franz
    Jech, Markus
    Stampfer, Bernhard
    Furchi, Marco M.
    Mueller, Thomas
    Grasser, Tibor
    2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2017, : 284 - 287
  • [44] Ambipolar MoS2 Thin Flake Transistors
    Zhang, Yijin
    Ye, Jianting
    Matsuhashi, Yusuke
    Iwasa, Yoshihiro
    NANO LETTERS, 2012, 12 (03) : 1136 - 1140
  • [45] Single-layer MoS2 transistors
    Radisavljevic B.
    Radenovic A.
    Brivio J.
    Giacometti V.
    Kis A.
    Nature Nanotechnology, 2011, 6 (3) : 147 - 150
  • [46] Semi-classical transport in MoS2 and MoS2 transistors by a Monte Carlo approach
    Pilotto, A.
    Khakbaz, P.
    Palestri, P.
    Esseni, D.
    SOLID-STATE ELECTRONICS, 2022, 192
  • [47] Size-Tunable Flowerlike MoS2 Nanospheres Combined with Laser-Induced Graphene Electrodes for NO2 Sensing
    Yan, Wenhao
    Yan, Wenrong
    Chen, Tianding
    Xu, Jiangang
    Tian, Qiong
    Ho, Derek
    ACS APPLIED NANO MATERIALS, 2020, 3 (03) : 2545 - 2553
  • [48] Laser induced crystallization of sputtered MoS2 thin films
    Tonon, Alessandro
    Di Russo, Enrico
    Sgarbossa, Francesco
    Bacci, Luca
    Argiolas, Nicola
    Scian, Carlo
    Ivanov, Yurii P.
    Divitini, Giorgio
    Sheehan, Brendan
    De Salvador, Davide
    Gasparotto, Andrea
    Morandi, Vittorio
    Duffy, Ray
    Napolitani, Enrico
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 164
  • [49] High Precision Laser Induced Etching of Multilayered MoS2
    Ko, P. J.
    Thu, T. V.
    Takahashi, H.
    Abderrahmane, A.
    Takamura, T.
    Sandhu, A.
    IRAGO CONFERENCE 2013, 2014, 1585 : 73 - 76
  • [50] Pulse Duration Dependent Formation of Laser-Induced Periodic Surface Structures in Atomic Layer Deposited MoS2
    Becher, Malte J. M. J.
    Ullrich, Jonas B.
    Jagosz, Julia
    Kostka, Aleksander
    Bock, Claudia
    Ostendorf, Andreas
    Gurevich, Evgeny L.
    ADVANCED MATERIALS INTERFACES, 2024, 11 (35):