On solution of generalized proportional fractional integral via a new fixed point theorem

被引:9
|
作者
Das, Anupam [1 ]
Suwan, Iyad [2 ]
Deuri, Bhuban Chandra [3 ]
Abdeljawad, Thabet [4 ,5 ,6 ]
机构
[1] Cotton Univ, Dept Math, Gauhati 781001, Assam, India
[2] Arab Amer Univ, Dept Math & Stat, POB 240, Zababdeh 13, Jenin, Palestine
[3] Rajiv Gandhi Univ, Dept Math, Doimukh 791112, Arunachal Prade, India
[4] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[6] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Measure of noncompactness (MNC); Fixed point theorem; Generalized proportional fractional integral; DIFFERENTIAL-EQUATIONS; INFINITE SYSTEM; NONCOMPACTNESS; SOLVABILITY;
D O I
10.1186/s13662-021-03589-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is the solvability of generalized proportional fractional(GPF) integral equation at Banach space E. Herein, we have established a new fixed point theorem which is then applied to the GPF integral equation in order to establish the existence of solution on the Banach space. At last, we have illustrated a genuine example that verified our theorem and gave a strong support to prove it.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Solvability of (P, Q)-functional integral equations of fractional order using generalized Darbo's fixed point theorem
    Das, Anupam
    Hazarika, Bipan
    Mursaleen, Mohammad
    Nashine, Hemant Kumar
    Parvaneh, Vahid
    FILOMAT, 2023, 37 (23) : 7849 - 7865
  • [42] SOME FIXED POINT THEOREMS IN GENERALIZED DARBO FIXED POINT THEOREM AND THE EXISTENCE OF SOLUTIONS FOR SYSTEM OF INTEGRAL EQUATIONS
    Arab, Reza
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 125 - 139
  • [43] Solvability of infinite system of implicit fractional integral equations of two variables in tempered sequence spaces via generalized Darbo's fixed point theorem
    Haque, Inzamamul
    Ali, Javid
    Mursaleen, M.
    JOURNAL OF ANALYSIS, 2024,
  • [44] Existence of Fixed Points for An Integral Operator via Fixed Point Theorem on Gauge Spaces
    Ali, Muhammad Usman
    Kumam, Poom
    Fahimuddin
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (01): : 15 - 25
  • [45] Computation of solution of integral equations via fixed point results
    Alqudah, Manar A.
    Garodia, Chanchal
    Uddin, Izhar
    Nieto, Juan J.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 772 - 785
  • [46] A New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized Ψ-simulation Functions
    Joonaghany, Gholamreza Heidary
    Farajzadeh, Ali
    Azhini, Mandi
    Khojasteh, Farshid
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 16 (01): : 129 - 148
  • [47] A Generalized Banach Fixed Point Theorem
    Shukla, Satish
    Balasubramanian, Sriram
    Pavlovic, Mirjana
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1529 - 1539
  • [48] On a generalized Krasnoselskii fixed point theorem
    Pham, Hien Van
    OPEN MATHEMATICS, 2024, 22 (01):
  • [49] SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS VIA COUPLED FIXED POINT
    Afshari, Hojjat
    Kalantari, Sabileh
    Karapinar, Erdal
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, : 1 - 12
  • [50] A Generalized Banach Fixed Point Theorem
    Satish Shukla
    Sriram Balasubramanian
    Mirjana Pavlović
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1529 - 1539