Coulomb Blockade Thermometry on a Wide Temperature Range

被引:0
|
作者
Hahtela, O. M. [1 ,3 ]
Kemppinen, A. [1 ]
Lehtinen, J. [1 ]
Manninen, A. J. [1 ]
Mykkanen, E. [1 ]
Prunnila, M. [1 ]
Yurttagul, N. [1 ]
Blanchet, F. [2 ]
Gramich, M. [2 ,4 ]
Karimi, B. [2 ]
Mannila, E. T. [2 ]
Muhojoki, J. [2 ]
Peltonen, J. T. [2 ]
Pekola, J. P. [2 ]
机构
[1] VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland
[2] Aalto Univ, QTF Ctr Excellence, Dept Appl Phys, FI-00076 Aalto, Finland
[3] Vaisala Oyj, Vanha Nurmijarventie 21, FI-01670 Vantaa, Finland
[4] MUAS, Dept Appl Sci & Mechatron, Lothstr 34, D-80335 Munich, Germany
关键词
Temperature measurement; thermometers; cryogenics; nanoelectronics; tunneling; single electron devices;
D O I
10.1109/cpem49742.2020.9191726
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Coulomb Blockade Thermometer (CBT) is a primary thermometer for cryogenic temperatures, with demonstrated operation from below 1 mK up to 60 K. Its performance as a primary thermometer has been verified at temperatures from 20 mK to 200 mK at uncertainty level below 1 % (k = 2). In a new project, our aim is to extend the metrologically verified temperature range of the primary CBT up to 25 K. We also demonstrate close-to-ideal operation of a CBT with only two tunnel junctions when the device is embedded in a low-impedance environment.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Coulomb blockade and Coulomb staircase behavior observed at room temperature
    Vivitasari, Pipit Uky
    Azuma, Yasuo
    Sakamoto, Masanori
    Teranishi, Toshiharu
    Majima, Yutaka
    MATERIALS RESEARCH EXPRESS, 2017, 4 (02):
  • [22] A two-dimensional array of tunnel junctions used for Coulomb blockade thermometry
    Bergsten, T
    Claeson, T
    Delsing, P
    PHYSICA B, 2000, 284 : 1788 - 1789
  • [23] Ex situ tunnel junction process technique characterized by Coulomb blockade thermometry
    Prunnila, M.
    Meschke, M.
    Gunnarsson, D.
    Enouz-Vedrenne, S.
    Kivioja, J. M.
    Pekola, J. P.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (05): : 1026 - 1029
  • [24] Coulomb blockade thermometry using a two-dimensional array of tunnel junctions
    Bergsten, T
    Claeson, T
    Delsing, P
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (07) : 3844 - 3847
  • [25] Dual-Emitting Dihydrophenazines for Highly Sensitive and Ratiometric Thermometry over a Wide Temperature Range
    Shi, Lijiang
    Song, Wenxuan
    Lian, Cheng
    Chen, Wei
    Mei, Ju
    Su, Jianhua
    Liu, Honglai
    Tian, He
    ADVANCED OPTICAL MATERIALS, 2018, 6 (15):
  • [26] Dynamical Coulomb blockade under a temperature bias
    Duprez, H.
    Pierre, F.
    Sivre, E.
    Aassime, A.
    Parmentier, F. D.
    Cavanna, A.
    Ouerghi, A.
    Gennser, U.
    Safi, I
    Mora, C.
    Anthore, A.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [27] ELECTROACOUSTICAL THERMOMETRY IN LOW-TEMPERATURE RANGE
    BRODSKII, AD
    MEASUREMENT TECHNIQUES-USSR, 1967, (06): : 671 - &
  • [28] Au-Ge Alloys for Wide-Range Low-Temperature On-Chip Thermometry
    Dann, J. R. A.
    Verpoort, P. C.
    Ferreira de Oliveira, J.
    Rowley, S. E.
    Datta, A.
    Kar-Narayan, S.
    Ford, C. J. B.
    Conduit, G. J.
    Narayan, V
    PHYSICAL REVIEW APPLIED, 2019, 12 (03)
  • [29] Coulomb blockade in a quantum wire with long-range interactions
    Maurey, H
    Giamarchi, T
    EUROPHYSICS LETTERS, 1997, 38 (09): : 681 - 686
  • [30] Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry
    Kaczmarek, Anna M.
    Maegawa, Yoshifumi
    Abalymov, Anatolii
    Skirtach, Andre G.
    Inagaki, Shinji
    Van Der Voort, Pascal
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) : 13540 - 13550