Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network

被引:130
|
作者
Guo, Yu [1 ]
Yang, Dongfang [2 ]
Zhang, Yang [3 ]
Wang, Licheng [4 ]
Wang, Kai [1 ]
机构
[1] Qingdao Univ, Sch Elect Engn, Weihai Innovat Res Inst, Qingdao 266000, Peoples R China
[2] Xian Traff Engn Inst, Xian 710300, Peoples R China
[3] State Power Investment Corp, Strateg Res Inst, Beijing, Peoples R China
[4] Zhejiang Univ Technol, Sch Informat Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of health; Data-driven; SSA-Elman; MODEL;
D O I
10.1186/s41601-022-00261-y
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The estimation of state of health (SOH) of a lithium-ion battery (LIB) is of great significance to system safety and economic development. This paper proposes a SOH estimation method based on the SSA-Elman model for the first time. To improve the correlation rates between features and battery capacity, a method combining median absolute deviation filtering and Savitzky-Golay filtering is proposed to process the data. Based on the aging characteristics of the LIB, five features with correlation rates above 0.99 after data processing are then proposed. Addressing the defects of the Elman model, the sparrow search algorithm (SSA) is used to optimize the network parameters. In addition, a data incremental update mechanism is added to improve the generalization of the SSA-Elman model. Finally, the performance of the proposed model is verified based on NASA dataset, and the outputs of the Elman, LSTM and SSA-Elman models are compared. The results show that the proposed method can accurately estimate the SOH, with the root mean square error (RMSE) being as low as 0.0024 and the mean absolute percentage error (MAPE) being as low as 0.25%. In addition, RMSE does not exceed 0.0224 and MAPE does not exceed 2.21% in high temperature and low temperature verifications.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    ENERGY, 2021, 236
  • [42] Lithium-ion battery state of charge estimation based on dynamic neural network and Kalman filter
    Chen Kun
    Mao Zhiwei
    Lai Yuehua
    Jiang Zhinong
    Zhang Jinjie
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,
  • [43] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [44] Online State-of-Health Estimation Method for Lithium-Ion Battery Based on CEEMDAN for Feature Analysis and RBF Neural Network
    Mao, Ling
    Hu, Huizhong
    Chen, Jiajun
    Zhao, Jinbin
    Qu, Keqing
    Jiang, Lei
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2023, 11 (01) : 187 - 200
  • [45] An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman neural network
    Li, Wenhua
    Jiao, Zhipeng
    Du, Le
    Fan, Wenyi
    Zhu, Yazun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 12270 - 12276
  • [46] Physically enhanced neural network for lithium-ion battery state of health estimation
    Zhou, Ziao
    Jiang, Yuning
    Wang, Ting
    Shi, Yuanming
    Cai, Haibin
    Jones, Colin N.
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [47] LITHIUM BATTERY SOH ESTIMATION METHOD BASED ON COMBINATION OF TRANSFER LEARNING AND GRU NEURAL NETWORK
    Mo Y.
    Yu Z.
    Ye P.
    Fan W.
    Lin Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (03): : 233 - 239
  • [48] An online state of health estimation technique for lithium-ion battery using artificial neural network and linear interpolation
    Luo, Yi-Feng
    Lu, Ken-Yueh
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [49] State of Charge Estimation for Lithium-ion Battery using Recurrent Neural Network
    Liu, Van-Tsai
    Sun, Yi-Kai
    Lu, Hong-Yi
    Wang, Sun-Kai
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), 2018, : 376 - 379
  • [50] Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network
    Zhang, Xin
    Hou, Jiawei
    Wang, Zekun
    Jiang, Yueqiu
    ENERGIES, 2023, 16 (01)