Density of States of Quantum Spin Systems from Isotropic Entanglement

被引:10
|
作者
Movassagh, Ramis [1 ]
Edelman, Alan [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.107.097205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method that we call isotropic entanglement (IE), which predicts the eigenvalue distribution of quantum many body (spin) systems with generic interactions. We interpolate between two known approximations by matching fourth moments. Though such problems can be QMA-complete, our examples show that isotropic entanglement provides an accurate picture of the spectra well beyond what one expects from the first four moments alone. We further show that the interpolation is universal, i.e., independent of the choice of local terms.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Entanglement of formation for isotropic states
    Terhal, BM
    Vollbrecht, KGH
    PHYSICAL REVIEW LETTERS, 2000, 85 (12) : 2625 - 2628
  • [22] Bound on remote preparation of entanglement from isotropic states
    Lee, Soojoon
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [23] Extremality and entanglement of states in coupled quantum systems
    Parthasarathy, K. R.
    QUANTUM COMPUTING: BACK ACTION 2006, 2006, 864 : 54 - 66
  • [24] Pairwise entanglement and quantum phase transitions in spin systems
    Gu Shi-Jian
    Tian Guang-Shan
    Lin Hai-Qing
    CHINESE PHYSICS LETTERS, 2007, 24 (10) : 2737 - 2740
  • [25] Entanglement observables and witnesses for interacting quantum spin systems
    Wu, LA
    Bandyopadhyay, S
    Sarandy, MS
    Lidar, DA
    PHYSICAL REVIEW A, 2005, 72 (03):
  • [26] Entanglement in SU(2)-invariant quantum spin systems
    Schliemann, J
    PHYSICAL REVIEW A, 2003, 68 (01):
  • [27] Electron Entanglement Detected by Quantum Spin Hall Systems
    Chen, Wei
    Shen, R.
    Sheng, L.
    Wang, B. G.
    Xing, D. Y.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [28] Wehrl entropy and entanglement complexity of quantum spin systems
    Xu, Chen
    Yu, Yiqi
    Zhang, Peng
    New Journal of Physics, 2024, 26 (12)
  • [29] Studying quantum spin systems through entanglement estimators
    Roscilde, T
    Verrucchi, P
    Fubini, A
    Haas, S
    Tognetti, V
    PHYSICAL REVIEW LETTERS, 2004, 93 (16) : 167203 - 1
  • [30] Entanglement in SU(2)-invariant quantum spin systems
    Schliemann, John
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (01): : 1 - 012309