Magnetic properties and electronic origin of the interface between dilute magnetic semiconductors with orthogonal magnetic anisotropy

被引:8
|
作者
Need, Ryan F. [1 ,2 ]
Bac, Seul-Ki [3 ,4 ]
Liu, Xinyu [3 ]
Lee, Sanghoon [4 ]
Kirby, Brian J. [2 ]
Dobrowolska, Margaret [3 ]
Kossut, Jacek [5 ]
Furdyna, Jacek K. [3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[3] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[4] Korea Univ, Dept Phys, Seoul 136701, South Korea
[5] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
基金
新加坡国家研究基金会;
关键词
ACCEPTOR LEVEL; EPITAXY; DEPTH;
D O I
10.1103/PhysRevMaterials.4.054410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Controlling changes in magnetic anisotropy across epitaxial film interfaces is an important prerequisite for many spintronic devices. For the canonical dilute magnetic semiconductor GaMnAs, magnetic anisotropy is highly tunable through strain and doping, making it a fascinating model system for exploration of anisotropy control in a carrier-mediated ferromagnet. Here, we have used transmission electron microscopy and polarized neutron reflectometry to characterize the interface between GaMnAs-based layers designed to have anisotropy vectors oriented at right angles from one another. For a bilayer of Ga1-xMnxAs1-yPy and Ga1-xMnxAs, we find that the entirety of the Ga1-xMnxAs layer exhibits in-plane magnetic anisotropy and that the majority of the Ga1-xMnxAs1-yPy exhibits perpendicular anisotropy. However, near the Ga1-xMnxAs interface, we observe a thin Mn-rich region of the nominally perpendicular Ga(1-x)A(x)As(1-y)P(y) that instead exhibits in plane anisotropy. Using first-principles energy considerations, we explain this sublayer as a natural consequence of interfacial carrier migration.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] EFFECTS OF OXYGEN VACANCY ON MAGNETIC PROPERTIES OF COBALT-DOPED ZnO DILUTE MAGNETIC SEMICONDUCTORS
    Tao, H. L.
    Zhang, Z. H.
    Pan, L. L.
    He, M.
    Song, B.
    Li, Q.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (17):
  • [32] Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films
    Kayani, Zohra Nazir
    Usman, Ayesha
    Nazli, Hina
    Sagheer, Riffat
    Riaz, Saira
    Naseem, Shahzad
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (07):
  • [33] Optical and magnetic properties of Fe and Ni co-doped ZnO dilute magnetic semiconductors
    Wei, Zhi-Qiang, 1600, Central South University (19):
  • [34] Structural and magnetic properties of Co+ implanted n-GaN dilute magnetic semiconductors
    Husnain, G.
    Tao, Fa
    Shu-De, Yao
    PHYSICA B-CONDENSED MATTER, 2010, 405 (09) : 2340 - 2343
  • [35] Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films
    Zohra Nazir Kayani
    Ayesha Usman
    Hina Nazli
    Riffat Sagheer
    Saira Riaz
    Shahzad Naseem
    Applied Physics A, 2020, 126
  • [36] Influence of Acoustic Phonons on the Magnetic Anisotropy in GaMnAs Magnetic Semiconductors
    Jasiukiewicz, C.
    Stagraczynski, S.
    Lehmann, D.
    Dugaev, V. K.
    Berakdar, J.
    ACTA PHYSICA POLONICA A, 2015, 128 (02) : 179 - 181
  • [37] Anisotropy of the magnetization of a dilute magnetic oxide
    Coey, JMD
    Venkatesan, M
    Fitzgerald, CB
    Dorneles, LS
    Stamenov, P
    Lunney, JG
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 1405 - 1407
  • [38] Structural, electronic and magnetic properties of transition metal atom-doped ZnS dilute magnetic semiconductors: A first-principles study
    Yin, Zhu-Hua
    Zhang, Jian-Min
    Xu, Ke-Wei
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 183 : 201 - 209
  • [39] Spin injection into semiconductors using dilute magnetic semiconductors
    Gould, C
    Schmidt, G
    Richter, G
    Fiederling, R
    Grabs, P
    Molenkamp, LW
    APPLIED SURFACE SCIENCE, 2002, 190 (1-4) : 395 - 402
  • [40] SHALLOW ACCEPTOR STATES IN DILUTE MAGNETIC SEMICONDUCTORS IN A MAGNETIC-FIELD
    GAWRON, TR
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (01): : 21 - 28