Effects of Ceria on the Oxygen Reduction Activity and Thermal Cycling Stability of BaCo0.4Fe0.4Zr0.1Y0.1O3-d Cathode for Solid Oxide Fuel Cells

被引:13
|
作者
Li, Yanpu [1 ]
Li, Yihang [1 ,2 ]
Singh, Manish [3 ]
Li, Zhengnan [1 ]
Hu, Xingliu [4 ]
Fan, Liangdong [1 ,5 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Dept New Energy Sci & Technol, Shenzhen 518060, Guangdong, Peoples R China
[2] Xidian Univ, Acad Adv Interdisciplinary Res, Interdisciplinary Res Ctr Smart Sensors, Xian 710071, Peoples R China
[3] Oklahoma State Univ, Helmerich Res Ctr, Sch Mat Sci & Engn, Tulsa, OK 74106 USA
[4] Jinling Inst Technol, Sch Intelligence Sci & Control Engn, Nanjing 211169, Peoples R China
[5] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen Key Lab New Lithium Ion Batteries & Mesop, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
solid oxide fuel cell; BaCo0.4Fe0.4Zr0.1Y0.1O3-d; oxygen reduction reaction; thermal cycling; composite electrode; HIGH-PERFORMANCE; PEROVSKITE; COMPOSITE; ELECTROLYTE;
D O I
10.1021/acsaem.2c02949
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BaCo0.4Fe0.4Zr0.1Y0.1O3-delta (BCFZY) has been demonstrated to be a highly active yet large thermal expansion cathode catalyst for solid oxide fuel cells (SOFCs). In this work, gadolinia doped ceria (GDC) was mixed with BCFZY (BCFZY-GDC) to investigate its oxygen reduction reaction activities and chemical/thermal compatibility with electrolyte. Improved thermal compatibility of BCFZY-GDC with electrolyte and cathodic activity in symmetric cells were obtained, while, in contrast to the results of the common composite approach, the addition of ceria reduced surface exchange and bulk diffusion coefficient and subsequently decreased electrochemical performance under typical fuel cell condition. This interesting phenomenon was explored based on the limited electronic conductivity and using distinct modes of action of measurement techniques. Besides, SOFCs with BCFZY-GDC showed remarkable stability in 100 h of testing, during which 54 times of thermal cycling operations at 600-800 degrees C with a ramp rate of 20 degrees C min(-1) were performed, whereas SOFCs using BCFZY showed gradually reduced performance in 9 times of thermal cycling and failed within 20 h of testing under the same operational condition, highlighting the crucial role of thermal compatibility among SOFC key components for efficient and durable energy conversion in practical application.
引用
收藏
页码:14391 / 14400
页数:10
相关论文
共 50 条
  • [21] Characterization and optimization of highly active and Ba-deficient BaCo0.4Fe0.4Zr0.1Y0.1O3-δ-based cathode materials for protonic ceramics fuel cells
    Wei, Kangwei
    Li, Na
    Wu, Yujie
    Song, Wenchao
    Wang, Xinxin
    Guo, Litong
    Khan, Majid
    Wang, Shaorong
    Zhou, Fubao
    Ling, Yihan
    CERAMICS INTERNATIONAL, 2019, 45 (15) : 18583 - 18591
  • [22] A-Site Nonstoichiometric Ba x Co0.4Fe0.4Zr0.1Y0.1O3-δ Cathode for Protonic Ceramics Fuel Cells
    Wei, Kangwei
    Guo, Zhiguo
    Chen, Fanglin
    Liu, Hong
    Ling, Yihan
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (42) : 49785 - 49793
  • [23] A triple (e-/O2-/H+) conducting perovskite BaCo0.4Fe0.4Zr0.1Y0.1O3-δ for low temperature solid oxide fuel cell
    Jhuang, Jhe-Wei
    Lee, Kan-Rong
    Lee, Sheng-Wei
    Wang, Baoyuan
    Xia, Chen
    Hung, I. Ming
    Tseng, Chung-Jen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (15) : 9767 - 9774
  • [24] Fluorination inductive effect enables rapid bulk proton diffusion in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxide for high-activity protonic ceramic fuel cell cathode
    Ren, Rongzheng
    Yu, Xiaodan
    Wang, Zhenhua
    Xu, Chunming
    Song, Tinglu
    Sun, Wang
    Qiao, Jinshuo
    Sun, Kening
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 317
  • [25] Enhanced electrolysis performance through hierarchical nanoparticle formation in the BaCo0.4Fe0.4Zr0.1Y0.1O3-s cathode materials system
    Meng, Yuqing
    Zheng, Hongkui
    Duffy, Jack
    Huang, Hua
    He, Kai
    Tong, Jianhua
    Brinkman, Kyle S.
    JOURNAL OF POWER SOURCES, 2023, 560
  • [26] A stable Zr-Y co-doped perovskite BaCo0.4Fe0.4Zr0.1Y0.1O3-δ ceramic membrane for highly efficient oxygen separation
    Zhang, Dandan
    Zhang, Xiaozhen
    Jiang, Yuhua
    Ye, Shancheng
    Qiang, Linya
    Lin, Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 295
  • [27] Redox inactive ion meliorated BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxides as efficient electrocatalysts for the oxygen evolution reaction
    Li, Xiangnan
    Zhang, Jie
    Feng, Qi
    Pu, Chunying
    Zhang, Luozheng
    Hu, Manman
    Zhou, Xianyong
    Zhong, Xiongwei
    Yi, Wendi
    Tang, Jun
    Li, Zhiwei
    Zhao, Xingzhong
    Li, Hui
    Xu, Baomin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (36) : 17288 - 17296
  • [28] Compositing protonic conductor BaZr0.5Y0.5O3 (BZY) with triple conductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) as electrolyte for advanced solid oxide fuel cell
    He, Zili
    Nie, Jingjing
    Liu, Kai
    Ganesh, K. Sivajee
    Akbar, M.
    Xia, Chen
    Wang, Xunying
    Dong, Wenjing
    Huang, Jianbing
    Wang, Baoyuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (15) : 9799 - 9808
  • [29] Modification of Oxygen-Ionic Transport Barrier of BaCo0.4Zr0.1Fe0.4Y0.1O3 Steam (Air) Electrode by Impregnating Samarium-Doped Ceria Nanoparticles for Proton-Conducting Reversible Solid Oxide Cells
    Saqib, Muhammad
    Lee, John-In
    Shin, Ji-Seop
    Park, Kwangho
    Kim, You-Dong
    Kim, Ki Buem
    Kim, Jung Hyun
    Lim, Hyung-Tae
    Park, Jun-Young
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (12) : F746 - F754
  • [30] An amperometric high-temperature ammonia sensor based on a BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ triple conductor
    Chen, Wenwen
    Zou, Jie
    Shan, Liang
    Zhang, Huanhuan
    Wang, Wentian
    Jian, Jiawen
    Yuan, Tao
    Zhang, Xin
    Zhou, Yucun
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 414