Semantic Segmentation based Building Extraction Method using Multi-source GIS Map Datasets and Satellite Imagery

被引:24
|
作者
Li, Weijia [1 ]
He, Conghui [2 ]
Fang, Jiarui [2 ]
Fu, Haohuan [1 ]
机构
[1] Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1109/CVPRW.2018.00043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes our proposed building extraction method in DeepGlobe - CVPR 2018 Satellite Challenge. We proposed a semantic segmentation and ensemble learning based building extraction method for high resolution satellite images. Several public GIS map datasets were utilized through combining with the multispectral WorldView-3 satellite image datasets for improving the building extraction results. Our proposed method achieves the overall prediction score of 0.701 on the test dataset in DeepGlobe Building Extraction Challenge.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [41] A REFINING METHOD FOR BUILDING OBJECT AGGREGATION AND FOOTPRINT MODELLING USING MULTI-SOURCE DATA
    Li, Y.
    Zhu, L.
    Shimamura, H.
    Tachibana, K.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 41 - 46
  • [42] Multi-source remote sensing imagery collaboration method based on super-resolution reconstruction
    Li, Guang
    Han, Wenting
    Wei, Jiaqi
    Shang, Mingsheng
    Xiong, Diwen
    Zhai, Xuedong
    Dong, Yuxin
    Zhang, Liyuan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2025, 46 (04) : 1815 - 1839
  • [43] Enhancing flood susceptibility modeling using integration of multi-source satellite imagery and multi-input convolutional neural network
    Maddah, Shadi
    Mojaradi, Barat
    Alizadeh, Hosein
    NATURAL HAZARDS, 2025, 121 (03) : 2801 - 2824
  • [44] Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery
    Yuan, Lin
    Bao, Zhiyan
    Zhang, Haibo
    Zhang, Yuntao
    Liang, Xi
    OPTIK, 2017, 145 : 66 - 73
  • [45] Automated Global-Scale Detection and Characterization of Anthropogenic Activity using Multi-Source Satellite-Based Remote Sensing Imagery
    Goldberg, Hirsh R.
    Ratto, Christopher R.
    Banerjee, Amit
    Kelbaugh, Michael T.
    Giglio, Mark
    Vermote, Eric F.
    GEOSPATIAL INFORMATICS XIII, 2023, 12525
  • [46] HOUSEDIFF: A MAP-BASED BUILDING CHANGE DETECTION FROM HIGH RESOLUTION SATELLITE IMAGERY USING GEOMETRIC OPTIMIZATION METHOD
    Ishimaru, N.
    Iwamura, K.
    Kagawa, Y.
    Hino, T.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION IV, 2012, 39-B4 : 73 - 78
  • [47] High-resolution quantification of building stock using multi-source remote sensing imagery and deep learning
    Bao, Yi
    Huang, Zhou
    Wang, Han
    Yin, Ganmin
    Zhou, Xiao
    Gao, Yong
    JOURNAL OF INDUSTRIAL ECOLOGY, 2023, 27 (01) : 350 - 361
  • [48] Multi-Source Soft Pseudo-Label Learning with Domain Similarity-based Weighting for Semantic Segmentation
    Matsuzaki, Shigemichi
    Masuzawa, Hiroaki
    Miura, Jun
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5852 - 5857
  • [49] Identification Method of Major Rice Pests Based on YOLO v5 and Multi-source Datasets
    Liang Y.
    Qiu R.
    Li Z.
    Chen S.
    Zhang Z.
    Zhao J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (07): : 250 - 258
  • [50] INLINING 3D RECONSTRUCTION, MULTI-SOURCE TEXTURE MAPPING AND SEMANTIC ANALYSIS USING OBLIQUE AERIAL IMAGERY
    Frommholz, D.
    Linkiewicz, M.
    Poznanska, A. M.
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 605 - 612