Hyperelastic parameter identification of human articular cartilage and substitute materials

被引:16
|
作者
Weizel, A. [1 ]
Distler, T. [2 ]
Detsch, R. [2 ]
Boccaccini, A. R. [2 ]
Braeuer, L. [3 ]
Paulsen, F. [3 ]
Seitz, H. [1 ,4 ]
Budday, S. [5 ]
机构
[1] Univ Rostock, Fac Mech Engn & Marine Technol, Chair Microfluid, D-18059 Rostock, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Biomat, Dept Mat Sci & Engn, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Inst Funct & Clin Anat, D-91054 Erlangen, Germany
[4] Univ Rostock, Dept Life Light & Matter, D-18059 Rostock, Germany
[5] Friedrich Alexander Univ Erlangen Nurnberg, Inst Appl Mech, Dept Mech Engn, D-91058 Erlangen, Germany
关键词
Parameter identification; Finite hyperelasticity; Human articular cartilage; Hydrogels; Tissue engineering; MECHANICAL-BEHAVIOR; MODELS; STRAIN; RUBBER; DEFORMATION; ELASTICITY; HYDROGELS;
D O I
10.1016/j.jmbbm.2022.105292
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Numerical simulations are a valuable tool in the field of tissue engineering for cartilage repair and can help to understand which mechanical properties affect the behavior of chondrocytes and contribute to the success or failure of surrogate materials as implants. However, special attention needs to be paid when identifying corresponding material parameters in order to provide reliable numerical predictions of the material's response. In this study, we identify hyperelastic material parameters for numerical simulations in COMSOL Multiphysics (R) v. 5.6 for human articular cartilage and two surrogate materials, commercially available ChondroFiller(liquid), and oxidized alginate-gelatin (ADA-GEL) hydrogels. We consider several hyperelastic isotropic material models and provide separate parameter sets for the unconditioned and the conditioned material response, respectively, based on previously generated experimental data including both compression and tension experiments. We compare a direct parameter identification approach assuming homogeneous deformation throughout the specimen and an inverse approach, where the experiments are simulated using a finite element model with realistic boundary conditions in COMSOL Multiphysics (R) v. 5.6. We demonstrate that it is important to consider both compression and tension data simultaneously and to use the inverse approach to obtain reliable parameters. The one-term Ogden model best represents the unconditioned response of cartilage, while the conditioned response of cartilage and ADA-GEL is equally well represented by the two-term Ogden and five-term Mooney-Rivlin models. The five-term Mooney-Rivlin model is also most suitable to model the unconditioned response of ADA-GEL. For ChondroFiller(liquid), we suggest using the five-term Mooney-Rivlin or two-term Ogden model for the unconditioned and the two-term Ogden model for the conditioned material response. These results will help to choose appropriate material models and parameters for simulations of whole joints or to advance mechanical-stimulation assisted cartilage tissue engineering in the future.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Spectrocolorimetric evaluation of human articular cartilage
    Ishimoto, Y.
    Hattori, K.
    Ohgushi, H.
    Uematsu, K.
    Tanikake, Y.
    Tanaka, Y.
    Takakura, Y.
    OSTEOARTHRITIS AND CARTILAGE, 2009, 17 (09) : 1204 - 1208
  • [32] ELECTRON MICROSCOPY OF HUMAN ARTICULAR CARTILAGE
    SPYCHER, MA
    RUTTNER, JR
    SCHWEIZERISCHE MEDIZINISCHE WOCHENSCHRIFT, 1969, 99 (32) : 1165 - &
  • [33] VISCOELASTIC PROPERTIES OF HUMAN ARTICULAR CARTILAGE
    HAYES, WC
    MOCKROS, LF
    JOURNAL OF APPLIED PHYSIOLOGY, 1971, 31 (04) : 562 - +
  • [34] Lesions of human articular cartilage and their management
    Hauselmann, HJ
    Hunziker, EB
    SCHWEIZERISCHE MEDIZINISCHE WOCHENSCHRIFT, 1997, 127 (46) : 1911 - 1924
  • [35] COLLAGEN IN HUMAN ARTICULAR AND COASTAL CARTILAGE
    MILLER, EJ
    VANDERKO.JK
    SOKOLOFF, L
    ARTHRITIS AND RHEUMATISM, 1967, 10 (03): : 299 - &
  • [36] PHOSPHOPROTEINS IN HUMAN ARTICULAR-CARTILAGE
    ANDERSON, R
    SCHWARTZ, ER
    FEDERATION PROCEEDINGS, 1983, 42 (07) : 2084 - 2084
  • [37] THE MICROHARDNESS OF HUMAN ARTICULAR-CARTILAGE
    VIGNON, E
    ARLOT, M
    NOYER, D
    VIAL, P
    HARTMAN, D
    LYON MEDICAL, 1980, 243 (04): : 165 - 167
  • [38] States of water, surface and rheological characterisation of a new biohydrogel as articular cartilage substitute
    Leone, Gemma
    Bidini, Alessandra
    Lamponi, Stefania
    Magnani, Agnese
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2013, 24 (09) : 824 - 833
  • [39] The effect of cartilage degeneration on ultrasound speed in human articular cartilage
    Ohashi, Satoru
    Ohnishi, Isao
    Oka, Hiroyuki
    Matsumoto, Takuya
    Bessho, Masahiko
    Nakamura, Kozo
    Tanaka, Sakae
    MODERN RHEUMATOLOGY, 2016, 26 (03) : 426 - 434
  • [40] Proteomic analysis of human articular cartilage: Identification of differentially expressed proteins in knee osteoarthritis
    Guo, Dunming
    Tan, Wenfeng
    Wang, Fang
    Lv, Zheng
    Hu, Jun
    Lv, Tianrun
    Chen, Qun
    Gu, Xiaoyuan
    Wan, Bing
    Zhang, Zhongnan
    JOINT BONE SPINE, 2008, 75 (04) : 439 - 444