Noninvasive Imaging of Three-Dimensional Micro and Nanostructures by Topological Methods

被引:12
|
作者
Carpio, A. [1 ]
Dimiduk, T. G. [2 ]
Rapun, M. L. [3 ]
Selgas, V. [4 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Politecn Madrid, ETSI Aeronaut & Espacio, Dept Matemat Aplicada Ingn Aeroespacial, E-28040 Madrid, Spain
[4] Univ Oviedo, Escuela Politecn Ingn, Dept Matemat, Gijon 33203, Spain
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2016年 / 9卷 / 03期
基金
美国国家科学基金会;
关键词
visible light imaging; holography; inverse scattering; topological energy; topological derivative; cellular structures; microscale; nanoscale; HOLOGRAPHIC MICROSCOPY; PARTICLE TRACKING; SHAPE RECONSTRUCTION; COLLOIDAL PARTICLES; INVERSE SCATTERING; DIGITAL HOLOGRAPHY; LIVE CELLS; RESOLUTION; SENSITIVITY; IDENTIFICATION;
D O I
10.1137/16M1068669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present topological derivative and energy based procedures for the imaging of micro and nanostructures using one beam of visible light of a single wavelength. Objects with diameters as small as 10 nm can be located, and their position tracked with nanometer precision. Multiple objects distributed either on planes perpendicular to the incidence direction or along axial lines in the incidence direction are distinguishable. More precisely, the shape and size of plane sections perpendicular to the incidence direction can be clearly determined, even for asymmetric and non-convex scatterers. Axial resolution improves as the size of the objects decreases. Initial reconstructions may proceed by glueing together 2D horizontal slices between axial peaks or by locating objects at 3D peaks of topological energies, depending on the effective wavenumber. Below a threshold size, topological derivative based iterative schemes improve initial predictions of the location, size and shape of objects by postprocessing fixed measured data. For larger sizes, tracking the peaks of topological energy fields that average information from additional incident light beams seems to be more effective.
引用
收藏
页码:1324 / 1354
页数:31
相关论文
共 50 条
  • [21] Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms
    Javidi, B.
    Daneshpanah, M.
    Moon, I.
    IEEE PHOTONICS JOURNAL, 2010, 2 (02): : 256 - 259
  • [22] Three-Dimensional Magnetic Manipulation of Micro- and Nanostructures for Applications in Life Sciences
    Schuerle, Simone
    Erni, Sandro
    Flink, Maarten
    Kratochvil, Bradley E.
    Nelson, Bradley J.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) : 321 - 330
  • [23] Magnetotransport signatures of three-dimensional topological insulator nanostructures (vol 97, 245429, 2018)
    Moors, Kristof
    Schuffelgen, Peter
    Rosenbach, Daniel
    Schmitt, Tobias
    Schapers, Thomas
    Schmidt, Thomas L.
    PHYSICAL REVIEW B, 2021, 103 (07)
  • [24] Design and Control of Three-Dimensional Topological Magnetic Fields Using Interwoven Helical Nanostructures
    Fullerton, John
    Phatak, Charudatta
    NANO LETTERS, 2025, 25 (13) : 5148 - 5155
  • [25] Three-dimensional periodic graphene nanostructures
    Wilson, Peter M.
    Mbah, Gilbert N.
    Smith, Thomas G.
    Schmidt, Daniel
    Lai, Rebecca Y.
    Hofmann, Tino
    Sinitskii, Alexander
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (10) : 1879 - 1886
  • [26] Three-dimensional Printing of Carbon Nanostructures
    Resnick, Alex
    Park, Jungkyu
    Haile, Biya
    Farfan, Eduardo B.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2019, VOL 12: ADVANCED MATERIALS: DESIGN, PROCESSING, CHARACTERIZATION, AND APPLICATIONS, 2020,
  • [27] Three-dimensional STEM for observing nanostructures
    Koguchi, M
    Kakibayashi, H
    Tsuneta, R
    Yamaoka, M
    Niino, T
    Tanaka, N
    Kase, K
    Iwaki, M
    JOURNAL OF ELECTRON MICROSCOPY, 2001, 50 (03) : 235 - 241
  • [28] Three-dimensional representation of curved nanostructures
    Huang, Z
    Dikin, DA
    Ding, W
    Qiao, Y
    Fridmani, Y
    Ruoff, RS
    NANOENGINEERED ASSEMBLIES AND ADVANCED MICRO/NANOSYSTEMS, 2004, 820 : 393 - 400
  • [29] Three-dimensional imaging
    Sinna, R
    Garson, S
    Delay, E
    ANNALS OF PLASTIC SURGERY, 2005, 55 (06) : 696 - 697
  • [30] Three-dimensional imaging
    Homma, S
    Hozumi, T
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2000, 17 (08): : 743 - 743