Nonparametric Dynamic Conditional Beta

被引:2
|
作者
Maheu, John M. [1 ]
Zamenjani, Azam Shamsi [2 ]
机构
[1] McMaster Univ, Hamilton, ON, Canada
[2] Univ New Brunswick, Fredericton, NB, Canada
关键词
nonparametric; Dirichlet process mixture; GARCH; beta; MODEL;
D O I
10.1093/jjfinec/nbz024
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article derives a dynamic beta representation using a Bayesian semiparametric multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model. The conditional joint distribution of excess stock returns and market excess returns is modeled as a countably infinite mixture of normals. This allows for deviations from the elliptic family of distributions. Empirically, we find the time-varying beta of a stock nonlinearly depends on the expected value of excess market returns. The nonlinear dependence is robust to different GARCH specifications as well as more factors in the model. In highly volatile markets, beta is almost constant, while in stable markets, the beta coefficient can depend asymmetrically on the expected market excess return. We extend the model to several factors and find empirical support for a three-factor model with nonlinear factor sensitives.
引用
收藏
页码:583 / 613
页数:31
相关论文
共 50 条
  • [21] Nonparametric estimation of the conditional tail copula
    Gardes, Laurent
    Girard, Stephane
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 : 1 - 16
  • [22] Nonparametric extreme conditional expectile estimation
    Girard, Stephane
    Stupfler, Gilles
    Usseglio-Carleve, Antoine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (01) : 78 - 115
  • [23] A NEW NONPARAMETRIC MEASURE OF CONDITIONAL INDEPENDENCE
    Seth, Sohan
    Park, Il
    Principe, Jose C.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2981 - 2984
  • [24] Nonparametric Bayes inference on conditional independence
    Kunihama, Tsuyoshi
    Dunson, David B.
    BIOMETRIKA, 2016, 103 (01) : 35 - 47
  • [25] Nonparametric inferences for kurtosis and conditional kurtosis
    谢潇衡
    何幼桦
    Journal of Shanghai University(English Edition), 2009, 13 (03) : 225 - 232
  • [26] Successive nonparametric estimation of conditional distributions
    Vargas-Guzmán, JA
    Dimitrakopoulos, R
    MATHEMATICAL GEOLOGY, 2003, 35 (01): : 39 - 52
  • [27] A FLEXIBLE NONPARAMETRIC TEST FOR CONDITIONAL INDEPENDENCE
    Huang, Meng
    Sun, Yixiao
    White, Halbert
    ECONOMETRIC THEORY, 2016, 32 (06) : 1434 - 1482
  • [28] Nonparametric inferences for kurtosis and conditional kurtosis
    谢潇衡
    何幼桦
    Advances in Manufacturing, 2009, (03) : 225 - 232
  • [29] On conditional variance estimation in nonparametric regression
    Siddhartha Chib
    Edward Greenberg
    Statistics and Computing, 2013, 23 : 261 - 270
  • [30] A nonparametric bootstrap test of conditional distributions
    Fan, Yanqin
    Li, Qi
    Min, Insik
    ECONOMETRIC THEORY, 2006, 22 (04) : 587 - 613