On the use of probabilistic and non-probabilistic super parametric hybrid models for time-variant reliability analysis

被引:15
|
作者
Meng, Zeng [1 ]
Guo, Liangbing [1 ]
Hao, Peng [2 ]
Liu, Zhaotao [1 ]
机构
[1] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
[2] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid time-variant reliability; Super parametric non-probabilistic model; Out-crossing rate; RRIM; CONVEX MODEL; DESIGN OPTIMIZATION; FRAMEWORK;
D O I
10.1016/j.cma.2021.114113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to having a large number of uncertain variables originating from various sources in time-variant reliability problem, the methods for taking account of these uncertainties are of high significance in engineering. In this study, a novel hybrid time-variant reliability model is established based on a probabilistic model and a super parametric convex model. The probabilistic and non-probabilistic parameters can be addressed simultaneously using this model. The stochastic processes are discretized using the expansion optimal linear estimation method to capture the correlation among different time nodes. In addition, the hybrid reliability iteration method is presented to obtain the upper and lower bounds of failure probability simultaneously. Subsequently, a new relaxed reliability iteration method is proposed to solve the hybrid time-variant reliability model. The relaxed method is adopted to ensure the robustness and efficiency of the proposed method. Three examples are discussed to demonstrate the validity and usage of the presented methodology. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] An importance learning method for non-probabilistic reliability analysis and optimization
    Meng, Zeng
    Zhang, Dequan
    Li, Gang
    Yu, Bo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 59 (04) : 1255 - 1271
  • [32] Interval Perturbation Method to Structural Non-probabilistic Reliability Analysis
    Sun, Zuozhen
    Meng, Guangwei
    Li, Feng
    Zhou, Liming
    ADVANCES IN MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-4, 2013, 712-715 : 1527 - 1530
  • [33] Non-probabilistic model for structural reliability based on tolerance analysis
    Department of System Engineering of Engineering Technology, Beihang University, Beijing 100191, China
    Jixie Gongcheng Xuebao, 4 (157-162):
  • [34] Structure buckling and non-probabilistic reliability analysis of supercavitating vehicles
    安伟光
    周凌
    安海
    Journal of Harbin Institute of Technology(New series), 2009, (04) : 561 - 569
  • [35] Structure buckling and non-probabilistic reliability analysis of supercavitating vehicles
    An, Wei-Guang
    Zhou, Ling
    An, Hai
    Journal of Harbin Institute of Technology (New Series), 2009, 16 (04) : 561 - 569
  • [36] Based on Epsilon Method Structural Non-Probabilistic Reliability Analysis
    Kai, Ma
    Peng, Fu Hai
    INDUSTRIAL ENGINEERING, MACHINE DESIGN AND AUTOMATION (IEMDA 2014) & COMPUTER SCIENCE AND APPLICATION (CCSA 2014), 2015, : 168 - 174
  • [37] Interval non-probabilistic time-dependent reliability analysis of boom crane structures
    Yang Ruigang
    Li Wenzhao
    Zhao Guangli
    Liu Yuzhen
    Jing Weichen
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2021, 35 (02) : 535 - 544
  • [38] Interval non-probabilistic time-dependent reliability analysis of boom crane structures
    Yang Ruigang
    Li Wenzhao
    Zhao Guangli
    Liu Yuzhen
    Jing Weichen
    Journal of Mechanical Science and Technology, 2021, 35 : 535 - 544
  • [39] A convex model approach for structure non-probabilistic reliability analysis
    Yang, Zhengmao
    Zhang, Yanjuan
    Meng, Wenjun
    Cai, Jianghui
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2017, 231 (05) : 508 - 515
  • [40] Structural reliability analysis using non-probabilistic convex model
    Jiang, C.
    Bi, R. G.
    Lu, G. Y.
    Han, X.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 254 : 83 - 98