On improved predictive density estimation with parametric constraints

被引:22
|
作者
Fourdrinier, Dominique [1 ]
Marchand, Eric [2 ]
Righi, Ali [3 ]
Strawderman, William E. [4 ]
机构
[1] Univ Rouen, LITIS, EA 4108, F-76801 St Etienne, France
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Rouen, LMRS, UMR 6085, F-76801 St Etienne, France
[4] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Predictive estimation; risk function; quadratic loss; Kullback-Leibler loss; uniform priors; Bayes estimators; convex sets; cones; multivariate normal; UNIFORM PRIORS;
D O I
10.1214/11-EJS603
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of predictive density estimation for normal models under Kullback-Leibler loss (KL loss) when the parameter space is constrained to a convex set. More particularly, we assume that X similar to N-p (mu, v(x) I) is observed and that we wish to estimate the density of Y similar to N-p (mu, v(y) I) under KL loss when mu is restricted to the convex set C subset of R-p. We show that the best unrestricted invariant predictive density estimator (P) over capU is dominated by the Bayes estimator (P) over cap pi(C) associated to the uniform prior pi(C) on C. We also study so called plug-in estimators, giving conditions under which domination of one estimator of the mean vector mu over another under the usual quadratic loss, translates into a domination result for certain corresponding plug-in density estimators under KL loss. Risk comparisons and domination results are also made for comparisons of plug-in estimators and Bayes predictive density estimators. Additionally, minimaxity and domination results are given for the cases where: (i) C is a cone, and (ii) C is a ball.
引用
收藏
页码:172 / 191
页数:20
相关论文
共 50 条
  • [21] MULTIVARIATE KERNEL DENSITY ESTIMATION WITH A PARAMETRIC SUPPORT
    Jarnicka, Jolanta
    OPUSCULA MATHEMATICA, 2009, 29 (01) : 41 - 55
  • [22] NONPARAMETRIC DENSITY-ESTIMATION WITH A PARAMETRIC START
    HJORT, NL
    GLAD, IK
    ANNALS OF STATISTICS, 1995, 23 (03): : 882 - 904
  • [23] A note on kernel density estimation at a parametric rate
    Chacon, J. E.
    Montanero, J.
    Nogales, A. G.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (01) : 13 - 21
  • [24] PARAMETRIC GENERALIZED GAUSSIAN DENSITY-ESTIMATION
    VARANASI, MK
    AAZHANG, B
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1989, 86 (04): : 1404 - 1415
  • [25] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [26] Predictive Control and Estimation for Systems with Information Structured Constraints
    Namerikawa, Toru
    Hatanaka, Takeshi
    Fujita, Masayuki
    2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2011, : 538 - 543
  • [27] Pitman closeness properties of point estimators and predictive densities with parametric constraints
    Matsuda, Takeru
    Strawderman, William E.
    STATISTICS & PROBABILITY LETTERS, 2016, 116 : 101 - 106
  • [28] Effects of parametric constraints on the CRLB in gain and phase estimation problems
    Wijnholds, Stefan J.
    van der Veen, Alle-Jan
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (10) : 620 - 623
  • [29] Crowd Density Estimation: An Improved Approach
    Li, Wei
    Wu, Xiaojuan
    Matsumoto, Koichi
    Zhao, Hua-An
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1213 - +
  • [30] Improved density and distribution function estimation
    Oryshchenko, Vitaliy
    Smith, Richard J.
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3943 - 3984