Characterization of interpolation between Grand, small or classical Lebesgue spaces

被引:31
|
作者
Fiorenza, Alberto [1 ,2 ]
Formica, Maria Rosaria [3 ]
Gogatishvili, Amiran [4 ]
Kopaliani, Tengiz [5 ]
Rakotoson, Jean Michel [6 ]
机构
[1] Univ Napoli Federico II, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
[2] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[3] Univ Napoli Parthenope, Via Gen Parisi 13, I-80132 Naples, Italy
[4] Czech Acad Sci Zitna, Inst Math, Prague 11567 1, Czech Republic
[5] Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, Univ St 2, GE-0143 Tbilisi, Georgia
[6] Univ Poitiers, Lab Math & Applicat, Ave Marie & Pierre Curie,Teleport 2,BP 30179, F-86692 Futuroscope, France
基金
美国国家科学基金会;
关键词
REAL INTERPOLATION; DUALITY;
D O I
10.1016/j.na.2017.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the interpolation spaces between Grand, small or classical Lebesgue are so called Lorentz-Zygmund spaces or more generally G Gamma-spaces. As a direct consequence of our results any Lorentz-Zygmund space L-a,L-r (Log L)(beta), is an interpolation space in the sense of Peetre between either two Grand Lebesgue spaces or between two small spaces provided that 1 < a < infinity, beta not equal 0. The method consists in computing the so called K-functional of the interpolation space and in identifying the associated norm. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 453
页数:32
相关论文
共 50 条
  • [31] On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces
    Fiorenza, Alberto
    Formica, Maria Rosaria
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [32] On the interpolation constants for variable Lebesgue spaces
    Karlovych, Oleksiy
    Shargorodsky, Eugene
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (07) : 2877 - 2902
  • [33] Interpolation orbits in couples of Lebesgue spaces
    Ovchinnikov, VI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2005, 39 (01) : 46 - 56
  • [34] APPROXIMATION IN WEIGHTED GENERALIZED GRAND LEBESGUE SPACES
    Israfilov, Daniyal M.
    Testici, Ahmet
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 113 - 126
  • [35] Inequalities with conjugate exponents in grand Lebesgue spaces
    Erlin Castillo, Rene
    Rafeiro, Humberto
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (01): : 33 - 39
  • [36] Approximation In Weighted Generalized Grand Lebesgue Spaces
    Jafarov, Sadulla
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 140 - 147
  • [37] On the Duality of Grand Bochner-Lebesgue Spaces
    Jain, P.
    Singh, M.
    Singh, A. P.
    Stepanov, V. D.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 247 - 256
  • [38] Bochner–Riesz operators in grand lebesgue spaces
    Maria Rosaria Formica
    Eugeny Ostrovsky
    Leonid Sirota
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [39] A note on the continuity of minors in grand Lebesgue spaces
    Molchanova, Anastasia
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [40] Identification of Fully Measurable Grand Lebesgue Spaces
    Anatriello, Giuseppina
    Chill, Ralph
    Fiorenza, Alberto
    JOURNAL OF FUNCTION SPACES, 2017, 2017