Performance analysis of proton exchange membrane fuel cell in automotive applications

被引:29
|
作者
Pahon, E. [1 ]
Bouquain, D. [2 ]
Hissel, D. [2 ]
Rouet, A. [3 ]
Vacquier, C. [3 ]
机构
[1] Univ Bourgogne Franche Comte, UTBM, CNRS, FEMTO ST Inst,FCLAB, Belfort, France
[2] Univ Bourgogne Franche Comte, FCLAB, CNRS, FEMTO ST Inst, Belfort, France
[3] SYMBIO, Venissieux, France
关键词
Proton exchange membrane fuel cell; Start; stop cycling; Durability; Performance analysis; Degradation mechanisms; Oxygen reduction reaction; SHUT-DOWN STRATEGY; CARBON CORROSION; VEHICLES; CYCLES;
D O I
10.1016/j.jpowsour.2021.230385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper deals with the performance analysis of a proton exchange membrane fuel cell in automotive applications and especially for start/stop phases. Start-Stop cycles are one of the main sources of degradation for fuel cell systems, embedded in the automotive applications, among other dynamic conditions as idling, load cycling or high power. In this study, polarization curves and electrochemical impedance spectra are used to analyze the degradation mechanisms inside fuel cell stack during start/stop cycling. Obviously, the carbon support of the catalyst layer is the main constituent that suffers performance degradation during the 2,600 successive cycles performed. The impedance measurement of a 5 kW PEM fuel cell stack revealed that the ohmic resistance does not vary whereas the charger transfer and mass transfer resistances increase drastically depending on the number of cycle repetitions. The oxygen reduction reaction impact due to the fuel/air interface is also visible even if the reactants are consumed with a dummy load for the shutdowns.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Theoretical investigation of proton exchange membrane fuel cells oriented to automotive applications
    Anandkumar, G.
    Ramakrishnan, S.
    Arivarasan, N.
    Annamalai, K.
    GLOBAL NEST JOURNAL, 2024, 26 (05):
  • [22] Performance of a proton exchange membrane fuel cell stack
    Johnson, R.
    Morgan, C.
    Witmer, D.
    Johnson, T.
    International Journal of Non-Linear Mechanics, 2001, 36 (08) : 879 - 887
  • [23] A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies
    Liu, Chao-Yang
    Sung, Chia-Chi
    JOURNAL OF POWER SOURCES, 2012, 220 : 348 - 353
  • [24] Performance Degradation Study for a Proton Exchange Membrane Fuel Cell in Underwater Vehicle Applications
    Wang, Bin
    Du, Rui
    Yan, Yizhe
    Xiao, Chunwu
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL SYMPOSIUM ON INTELLIGENT UNMANNED SYSTEMS AND ARTIFICIAL INTELLIGENCE, SIUSAI 2024, 2024, : 28 - 32
  • [25] Study on performance of proton exchange membrane fuel cell with reformate fuel
    Yu, H.M.
    Yi, B.L.
    Bi, K.W.
    Hou, Z.J.
    Lin, Z.Y.
    Han, M.
    Dianyuan Jishu/Chinese Journal of Power Sources, 2001, 25 (04):
  • [26] Optimal Parameter Extraction and Performance Analysis of Proton Exchange Membrane Fuel Cell
    Khajuria, Rahul
    Lamba, Ravita
    Kumar, Rajesh
    2022 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS, PEDES, 2022,
  • [27] Performance examination and analysis of two different proton exchange membrane fuel cell
    School of Automotive Engineering, Tongji University, Shanghai 201804, China
    Tongji Daxue Xuebao, 2008, 12 (1697-1701):
  • [28] Performance Analysis and Control Structure Design for Proton Exchange Membrane Fuel Cell
    Chatrattanawet, Narissara
    Hakhen, Thanaphorn
    Saebea, Dang
    Arpornwichanop, Amornchai
    PRES2016: 19TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELING AND OPTIMIZATION FOR ENERGY SAVINGS AND POLLUTION REDUCTION, 2016, 52 : 997 - 1002
  • [29] Analysis of the Influence of Geometrical Parameters on the Performance of a Proton Exchange Membrane Fuel Cell
    Zhang, Guodong
    Tao, Huifang
    Li, Da
    Chen, Kewei
    Li, Guoxiang
    Bai, Shuzhan
    Sun, Ke
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2024, 20 (01): : 219 - 237
  • [30] Investigation on a parking control strategy for automotive proton exchange membrane fuel cell
    Ma, Tiancai
    Zhu, Dong
    Xie, Jialin
    Lin, Weikang
    Yang, Yanbo
    FUEL CELLS, 2021, 21 (04) : 390 - 397