Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAIF4 Coating for High-Performance Lithium-Ion Batteries

被引:90
|
作者
Zhao, Shuoqing [1 ]
Sun, Bing [1 ]
Yan, Kang [1 ]
Zhang, Jinqiang [1 ]
Wang, Chengyin [2 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Yangzhou Univ, Coll Chem & Chem Engn, 180 Si Wang Ting Rd, Yangzhou 225002, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
cathode materials; lithium-rich material; LiAIF(4); surface coating; anionic redox; ANIONIC REDOX ACTIVITY; LI; SURFACE; OXIDE; CHALLENGES; MECHANISM;
D O I
10.1021/acsami.8b11471
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-rich oxides have been regarded as one of the most competitive cathode materials for next-generation lithium-ion batteries due to their high theoretical specific capacity and high discharge voltage. However, they are still far from being commercialized due to low rate capability and poor cycling stability. In this study, we propose a heterostructured LiAIF(4) coating strategy to overcome those obstacles. The as-developed lithium-rich cathode material shows outstanding performance including a high reversible capacity (246 mA h g(-1) at 0.1C), excellent rate capability (133 mA h g(-1) at 5C), and ultralong cycling stability (3000 cycles). Comparing with those of pristine and AIF(3)-coated lithium-rich cathode materials, the enhanced performances can be attributed to the introduction of the lithium-ion-conductive nanolayer and the generation of nonbonding On- species in the active material lattice, which enable rapid and effective lithium ion transport and diffusion. Our work provides a new strategy to develop high-performance lithium-rich cathode materials for high-energy-density lithium-ion batteries.
引用
收藏
页码:33260 / 33268
页数:9
相关论文
共 50 条
  • [31] Research progress and prospect in element doping of lithium-rich layered oxides as cathode materials for lithium-ion batteries
    Dou Shumei
    Tan Dan
    Li Ping
    Li Huiqin
    Wei Fenyan
    Hongge Zhang
    Journal of Solid State Electrochemistry, 2023, 27 : 1 - 23
  • [32] Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials
    Zhao, Shuoqing
    Guo, Ziqi
    Yan, Kang
    Wan, Shuwei
    He, Fengrong
    Sun, Bing
    Wang, Guoxiu
    ENERGY STORAGE MATERIALS, 2021, 34 (34) : 716 - 734
  • [33] High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries
    Gummow, Rosalind J.
    Sharma, Neeraj
    Feng, Ruishu
    Han, Guihong
    He, Yinghe
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1856 - A1862
  • [34] Pb-Doped Lithium-Rich Cathode Material for High Energy Density Lithium-Ion Full Batteries
    Zhang, Xueqian
    Xiong, Yali
    Dong, Mengfei
    Hou, Zhiguo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : A2960 - A2965
  • [35] Recent developments strategies in high entropy modified lithium-rich layered oxides cathode for lithium-ion batteries
    Ajayi, Samuel O.
    Dolla, Tarekegn H.
    Bello, Ismaila T.
    Liu, Xinying
    Makgwane, Peter R.
    Mathe, Mkhulu K.
    Ehi-Eromosele, Cyril O.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 172
  • [36] A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode
    Jiang, Xiong
    Wang, Zhenhua
    Rooney, David
    Zhang, Xiaoxue
    Feng, Jie
    Qiao, Jinshuo
    Sun, Wang
    Sun, Kening
    ELECTROCHIMICA ACTA, 2015, 160 : 131 - 138
  • [37] Understanding of Spinel Phases in Lithium-Rich Cathode for High-Energy-Density Lithium-Ion Batteries: A Review
    Fang, Youyou
    Zhao, Jiayu
    Su, Yuefeng
    Dong, Jinyang
    Lu, Yun
    Li, Ning
    Wang, Haoyu
    Wu, Feng
    Chen, Lai
    ENERGY MATERIAL ADVANCES, 2024, 5
  • [38] A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
    Yan, Wuwei
    Yang, Shunyi
    Huang, Youyuan
    Yang, Yong
    Guohui Yuan
    Journal of Alloys and Compounds, 2020, 819
  • [39] A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
    Yan, Wuwei
    Yang, Shunyi
    Huang, Youyuan
    Yang, Yong
    Yuan, Guohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 819
  • [40] Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries
    Flamary-Mespoulie, Florian
    Boulineau, Adrien
    Martinez, Herve
    Suchomel, Matthew R.
    Delmas, Claude
    Pecquenard, Brigitte
    Le Cras, Frederic
    ENERGY STORAGE MATERIALS, 2020, 26 (26) : 213 - 222