Harnessing deep learning for physics-informed prediction of composite strength with microstructural uncertainties

被引:21
|
作者
Zhou, Kai [1 ]
Sun, Haotian [2 ]
Enos, Ryan [3 ]
Zhang, Dianyun [3 ]
Tang, Jiong [2 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn & Engn Mech, Houghton, MI 49931 USA
[2] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[3] Purdue Univ, Sch Aeronaut & Astronaut Engn, W Lafayette, IN 47907 USA
关键词
Composite strength; Representative volume elements (RVEs); Microstructural uncertainties; Progressive damage model; Deep leaning; Convolutional  neural  network (CNN); Transfer learning; HOMOGENIZATION MODEL; PROGRESSIVE DAMAGE; FIBER COMPOSITES; PART II; FAILURE; QUANTIFICATION; CLASSIFICATION; RECONSTRUCTION; IMPLEMENTATION; SIMULATION;
D O I
10.1016/j.commatsci.2021.110663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Representative volume elements (RVEs) are commonly utilized to analyze the effective properties of fiber reinforced composites based on their repetitive microstructures and the constituent fiber and matrix properties. Intrinsically, the randomness of fiber distribution exists in composites even though the manufacturing process is strictly controlled. Such microstructural uncertainties essentially render the composite strength stochastic and difficult to characterize. In this research, a physics-informed deep learning framework is developed to analyze the variation of the strength of composite material with microstructural uncertainties. A random fiber packing algorithm is employed to sample the RVE images that are subsequently subjected to composite progressive damage analysis using the finite element method. The input-output relations acquired from this first-principle analysis are used as training data to facilitate deep learning that is capable of directly predicting the composite strength based on the RVE image. Two neural network architectures, a customized convolutional neural network (CNN) and a VGG16 transfer learning neural network, are established, with the view to unleashing the power of deep learning with small data size. This new framework significantly expedites the uncertainty analysis. It can directly take the spatial uncertainties in RVEs into account, outperforming other uncertainty quantification approaches. Systematic case investigations are conducted, in which the statistical cross-validation confirms the validity of the method. Owing to the highly efficient emulation, one can further carry out convergence analysis for uncertainty quantification. The results clearly demonstrate the effectiveness and capability of the proposed new framework for composite strength prediction. This framework is generic, which can be potentially extended into uncertainty quantification of other composite properties.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
    Qiu, Yitao
    Arunachala, Prajwal Kammardi
    Linder, Christian
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (03)
  • [32] Physics-informed deep learning for one-dimensional consolidation
    Yared W.Bekele
    Journal of Rock Mechanics and Geotechnical Engineering, 2021, (02) : 420 - 430
  • [33] Physics-informed deep learning approach for modeling crustal deformation
    Okazaki, Tomohisa
    Ito, Takeo
    Hirahara, Kazuro
    Ueda, Naonori
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [34] Physics-informed Deep Learning for Flow Modelling and Aerodynamic Optimization
    Sun, Yubiao
    Sengupta, Ushnish
    Juniper, Matthew
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1149 - 1155
  • [35] Room impulse response reconstruction with physics-informed deep learning
    Karakonstantis, Xenofon
    Caviedes-Nozal, Diego
    Richard, Antoine
    Fernandez-Grande, Efren
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (02): : 1048 - 1059
  • [36] Physics-informed deep generative learning for quantitative assessment of the retina
    Brown, Emmeline E.
    Guy, Andrew A.
    Holroyd, Natalie A.
    Sweeney, Paul W.
    Gourmet, Lucie
    Coleman, Hannah
    Walsh, Claire
    Markaki, Athina E.
    Shipley, Rebecca
    Rajendram, Ranjan
    Walker-Samuel, Simon
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [37] A Framework for Physics-Informed Deep Learning Over Freeform Domains
    Mezzadri, Francesco
    Gasick, Joshua
    Qian, Xiaoping
    COMPUTER-AIDED DESIGN, 2023, 160
  • [38] Physics-informed deep learning approach for modeling crustal deformation
    Tomohisa Okazaki
    Takeo Ito
    Kazuro Hirahara
    Naonori Ueda
    Nature Communications, 13
  • [39] A physics-informed deep learning approach for bearing fault detection
    Shen, Sheng
    Lu, Hao
    Sadoughi, Mohammadkazem
    Hu, Chao
    Nemani, Venkat
    Thelen, Adam
    Webster, Keith
    Darr, Matthew
    Sidon, Jeff
    Kenny, Shawn
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [40] Physics-informed deep learning for one-dimensional consolidation
    Bekele, Yared W.
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (02) : 420 - 430