Texture recognition using a non-parametric multi-scale statistical model

被引:36
|
作者
De Bonet, JS [1 ]
Viola, P [1 ]
机构
[1] MIT, Artificial Intelligence Lab, Learning & Vis Grp, Cambridge, MA 02139 USA
关键词
D O I
10.1109/CVPR.1998.698672
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a technique for using the joint occurrence of local features at multiple resolutions to measure the similarity between texture images. Though superficially similar to a number of "Gabor" style techniques, which recognize textures through the extraction of multi-scale feature vectors, our approach is derived from an accurate generative model of texture, which is explicitly multiscale and non-parametric. The resulting recognition procedure is similarly non-parametric, and can model complex non-homogeneous textures. We report results on publicly available texture databases. In addition, experiments indicate that this approach may have sufficient discrimination power to perform target detection in synthetic aperture radar images (SAR).
引用
收藏
页码:641 / 647
页数:7
相关论文
共 50 条
  • [41] Finger kunckcle patterns based person recognition via bank of multi-scale binarized statistical texture features
    Abdelouahab Attia
    Mourad Chaa
    Zahid Akhtar
    Youssef Chahir
    Evolving Systems, 2020, 11 : 625 - 635
  • [42] Non-parametric tests of returns to scale
    Simar, L
    Wilson, PW
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 139 (01) : 115 - 132
  • [43] Convexity recognition using multi-scale autoconvolution
    Rahtu, E
    Salo, M
    Heikkilä, J
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 692 - 695
  • [44] Non-parametric statistical methods for multivariate calibration model selection and comparison
    Thomas, EV
    JOURNAL OF CHEMOMETRICS, 2003, 17 (12) : 653 - 659
  • [45] Is non-parametric hypothesis testing model robust for statistical fault localization?
    Zhang, Zhenyu
    Chan, W. K.
    Tse, T. H.
    Hu, Peifeng
    Wang, Xinming
    INFORMATION AND SOFTWARE TECHNOLOGY, 2009, 51 (11) : 1573 - 1585
  • [46] Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques
    Indrani Pal
    Abir Al-Tabbaa
    Theoretical and Applied Climatology, 2011, 103 : 1 - 11
  • [47] Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques
    Pal, Indrani
    Al-Tabbaa, Abir
    THEORETICAL AND APPLIED CLIMATOLOGY, 2011, 103 (1-2) : 1 - 11
  • [48] A MULTI-MODAL APPROACH USING A NON-PARAMETRIC MODEL TO EXTRACT FETAL ECG
    Noorzadeh, Saman
    Rivet, Bertrand
    Gumery, Pierre-Yves
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 832 - 836
  • [49] A NON-PARAMETRIC MODEL FOR BALLISTOCARDIOGRAPHY
    Yao, Y.
    Schiefer, J.
    van Waasen, S.
    Schiek, M.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 69 - 72
  • [50] Using Non-parametric Count Model for Credit Scoring
    Sami Mestiri
    Abdeljelil Farhat
    Journal of Quantitative Economics, 2021, 19 : 39 - 49