Texture recognition using a non-parametric multi-scale statistical model

被引:36
|
作者
De Bonet, JS [1 ]
Viola, P [1 ]
机构
[1] MIT, Artificial Intelligence Lab, Learning & Vis Grp, Cambridge, MA 02139 USA
关键词
D O I
10.1109/CVPR.1998.698672
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a technique for using the joint occurrence of local features at multiple resolutions to measure the similarity between texture images. Though superficially similar to a number of "Gabor" style techniques, which recognize textures through the extraction of multi-scale feature vectors, our approach is derived from an accurate generative model of texture, which is explicitly multiscale and non-parametric. The resulting recognition procedure is similarly non-parametric, and can model complex non-homogeneous textures. We report results on publicly available texture databases. In addition, experiments indicate that this approach may have sufficient discrimination power to perform target detection in synthetic aperture radar images (SAR).
引用
收藏
页码:641 / 647
页数:7
相关论文
共 50 条
  • [1] A non-parametric multi-scale statistical model for natural images
    De Bonet, JS
    Viola, P
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 773 - 779
  • [2] A multi-scale non-parametric and parametric hybrid multi-category recognition algorithm with probabilistic outputs
    Lu, Zhao
    Fu, Haoda
    Song, Gangbing
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2015, 27 (04) : 487 - 500
  • [3] Multi-scale Regularization Approaches of Non-parametric Deformable Registrations
    Hsiang-Chi Kuo
    Keh-Shih Chuang
    Dennis Mah
    Andrew Wu
    Linda Hong
    Ravindra Yaparpalvi
    Shalom Kalnicki
    Journal of Digital Imaging, 2011, 24 : 586 - 597
  • [4] Multi-scale Regularization Approaches of Non-parametric Deformable Registrations
    Kuo, Hsiang-Chi
    Chuang, Keh-Shih
    Mah, Dennis
    Wu, Andrew
    Hong, Linda
    Yaparpalvi, Ravindra
    Kalnicki, Shalom
    JOURNAL OF DIGITAL IMAGING, 2011, 24 (04) : 586 - 597
  • [5] Depth Estimation from Multi-scale SLIC Superpixels Using Non-parametric Learning
    Jiang, Yifeng
    Zhu, Yuesheng
    Qing, Yin
    Yang, Fan
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [6] Multivariate and multi-scale generator based on non-parametric stochastic algorithms
    Markovic, Djurica
    Ilic, Sinisa
    Pavlovi, Dragutin
    Plavsic, Jasna
    Ilich, Nesa
    JOURNAL OF HYDROINFORMATICS, 2019, 21 (06) : 1102 - 1117
  • [7] Multi-Scale Analysis of Agricultural Drought Propagation on the Iberian Peninsula Using Non-Parametric Indices
    Possega, Marco
    Ojeda, Matilde Garcia-Valdecasas
    Gamiz-Fortis, Sonia Raquel
    WATER, 2023, 15 (11)
  • [8] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [9] Statistical Multi-scale Laws' Texture Energy for Texture Segmentation
    Wardhani, Mega Kusuma
    Yu, Xiangru
    Li, Jinping
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [10] Efficient multi-scale texture recognition algorithm
    He, Fa-Zhi (fzhe@whu.edu.cn), 1600, Chinese Academy of Sciences (25):