Upgrade and application of the gas puff imaging system in EAST

被引:2
|
作者
Liu, S. C. [1 ]
Gao, X. [1 ]
Liao, L. [1 ,2 ]
Zhong, L. J. [3 ]
Wei, W. [1 ,3 ]
Li, L. T. [1 ,4 ]
Wei, W. Y. [1 ,2 ]
Yan, N. [1 ]
Xing, Y. L. [1 ]
Xu, G. S. [1 ]
Shao, L. M. [1 ]
Chen, R. [1 ]
Hu, G. H. [1 ]
Liu, J. B. [1 ]
Liang, Y. [1 ,5 ]
Han, X. [1 ]
Cai, J. [1 ]
Zhao, N. [6 ]
Liu, X. J. [1 ]
Ming, T. F. [1 ]
Zang, Q. [1 ]
Wang, L. [1 ]
Zeng, L. [1 ]
Li, G. Q. [1 ]
Team, E. A. S. T. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Peoples Republ China, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Peoples Republ China, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Inst Opt & Fine Mech, Peoples Republ China, Hefei 230031, Peoples R China
[4] Anhui Univ, Hefei 230039, Peoples R China
[5] Forschungszentrum Julich, Inst Energie und Klimaforschung Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany
[6] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas puff imaging; GPI; Turbulence; Scrape-off layer; EAST; Tokamak; Plasma; COLLISIONAL-RADIATIVE MODEL; FLUCTUATION MEASUREMENTS; PLASMA-CONFINEMENT; CHAPTER; TURBULENCE; EDGE; HELIUM;
D O I
10.1016/j.fusengdes.2022.113156
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The gas puff imaging (GPI) system on EAST was developed in 2012 and upgraded in 2021. A new relay optical system, consisting of a front reflecting prism, a series of lenses and a filter, is developed for the GPI diagnostic. At the end of the relay optical system, the rays are focused on a thin image surface, which is captured by the sensor of a high-speed camera. In contrast with the previous optical system of GPI in which a coherent glass fiber bundle is used to transmit the image from the end of a telescope inside the vacuum vessel to the outside, the new relay optical system has much lower light loss, i.e., the emission intensity on the image plane of the new GPI is at least 15 times higher than the previous one. In consequence, the temporal resolution of GPI diagnostic on EAST can be raised significantly. The analysis of the optical design denotes that the imaging quality is high enough to ensure a spatial resolution of 2 mm on the objective plane. In the spring experimental campaign of 2021, the upgraded GPI system was commissioned in EAST. Clear poloidal and radial propagations of the edge fluctuations are measured directly by GPI with a high sampling rate of 530 kHz. The poloidal and radial velocities of the edge fluctuations are derived by the time-delay cross-correlation method, with the radial velocity propagating outward, and the poloidal velocity propagating in the ion-diamagnetic drift direction in the SOL and in the electrondiamagnetic drift direction inside the LCFS.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Development of the gas-puff imaging diagnostic in the TEXTOR tokamak
    Shesterikov, I.
    Xu, Y.
    Berte, M.
    Dumortier, P.
    Van Schoor, M.
    Vergote, M.
    Schweer, B.
    Van Oost, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (05):
  • [22] The upgrade of data processing and storage system for EAST NBI
    Gu, Yu
    Fan, Mengqi
    Zhao, Yuanzhe
    Zhang, Xiaodan
    FUSION ENGINEERING AND DESIGN, 2021, 173
  • [23] The upgrade of EAST central control system in PXI platforms
    Zhang, Z. C.
    Ji, Z. S.
    Xiao, B. J.
    Yang, F.
    Wang, Y.
    Xu, Z. H.
    Liu, J.
    FUSION ENGINEERING AND DESIGN, 2014, 89 (05) : 582 - 587
  • [24] 3D simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade
    Zhang, W.
    Bobkov, V.
    Lunt, T.
    Noterdaeme, J. -M.
    Coster, D.
    Bilato, R.
    Jacquet, P.
    Brida, D.
    Feng, Y.
    Wolfrum, E.
    Guimarais, L.
    NUCLEAR FUSION, 2016, 56 (03)
  • [25] Analysis techniques for blob properties from gas puff imaging data
    Offeddu, N.
    Wuethrich, C.
    Han, W.
    Theiler, C.
    Golfinopoulos, T.
    Terry, J. L.
    Marmar, E.
    Ravetta, A.
    Van Parys, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (03):
  • [26] Density and Temperature Correlations in the SOL; Implications for Gas Puff Imaging of Turbulence
    Moulton, D.
    Marandet, Y.
    Tamain, P.
    Ghendrih, Ph.
    Futtersack, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 575 - 579
  • [27] COMPARISON OF GAS PUFF IMAGING DATA IN NSTX WITH DEGAS 2 SIMULATIONS
    Cao, B.
    Stotler, D. P.
    Zweben, S. J.
    Bell, M.
    Diallo, A.
    LeBlanc, B.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 64 (01) : 29 - 38
  • [28] New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak
    Liu, S. C.
    Shao, L. M.
    Zweben, S. J.
    Xu, G. S.
    Guo, H. Y.
    Cao, B.
    Wang, H. Q.
    Wang, L.
    Yan, N.
    Xia, S. B.
    Zhang, W.
    Chen, R.
    Chen, L.
    Ding, S. Y.
    Xiong, H.
    Zhao, Y.
    Wan, B. N.
    Gong, X. Z.
    Gao, X.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12):
  • [29] Energy meter system for gas-puff laser plasma
    Bielecki, Zbigniew
    Mikolajczyk, Janusz
    OPTICA APPLICATA, 2007, 37 (1-2) : 83 - 92
  • [30] Energy meter system for gas-puff laser plasma
    Institute of Optoelectronics, Military University of Technology , Kaliskiego 2, 00-908 Warsaw, Poland
    Opt Appl, 2007, 1-2 (83-92):