We obtain the interior regularity criteria for the vorticity of "suitable" weak solutions to the Navier-Stokes equations. We prove that if two components of a vorticiy belongs to L-t,x(q,p) in a neighborhood of an interior point with 3/p + 2/q <= 2 and 3/2 < p < infinity, then solution is regular near that point. We also show that if the direction field of the vorticity is in some Triebel-Lizorkin spaces and the vorticity magnitude satisfies an appropriate integrability condition in a neighborhood of a point, then solution is regular near that point.
机构:
VA Steklov Inst Math St Petersburg, Fontanka 27, St Petersburg 191011, RussiaVA Steklov Inst Math St Petersburg, Fontanka 27, St Petersburg 191011, Russia
Ladyzhenskaya, O. A.
Seregin, G. A.
论文数: 0引用数: 0
h-index: 0
机构:
VA Steklov Inst Math St Petersburg, Fontanka 27, St Petersburg 191011, RussiaVA Steklov Inst Math St Petersburg, Fontanka 27, St Petersburg 191011, Russia
机构:
Quang Ninh Univ Ind Yen Tho, Fac Basic Sci, Dong Trieu, Quang Ninh, VietnamQuang Ninh Univ Ind Yen Tho, Fac Basic Sci, Dong Trieu, Quang Ninh, Vietnam
Duong, V. T. T.
Khai, D. Q.
论文数: 0引用数: 0
h-index: 0
机构:
Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, VietnamQuang Ninh Univ Ind Yen Tho, Fac Basic Sci, Dong Trieu, Quang Ninh, Vietnam
Khai, D. Q.
Tri, N. M.
论文数: 0引用数: 0
h-index: 0
机构:
Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, VietnamQuang Ninh Univ Ind Yen Tho, Fac Basic Sci, Dong Trieu, Quang Ninh, Vietnam