Sequential Monte Carlo framework for extended object tracking

被引:49
|
作者
Vermaak, J [1 ]
Ikoma, N
Godsill, SJ
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Lab, Cambridge CB2 1PZ, England
[2] Kyushu Inst Technol, Fukuoka, Japan
关键词
D O I
10.1049/ip-rsn:20045044
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The authors consider the problem of extended object tracking. An extended object is modelled as a set of point features in a target reference frame. The dynamics of the extended object are formulated in terms of the translation and rotation of the target reference frame relative to a fixed reference frame. This leads to realistic, yet simple, models for the object motion. It is assumed that the measurements of the point features are unlabelled, and contaminated with a high level of clutter, leading to measurement association uncertainty. Marginalising over all the association hypotheses may be computationally prohibitive for realistic numbers of point features and clutter measurements. The authors present an alternative approach within the context of particle filtering, where they augment the state with the unknown association hypothesis, and sample candidate values from an efficiently designed proposal distribution. This proposal elegantly captures the notion of a soft gating function. The performance of the algorithm is demonstrated on a challenging synthetic tracking problem, where the ground truth is known, in order to compare between different algorithms.
引用
收藏
页码:353 / 363
页数:11
相关论文
共 50 条
  • [41] Sequential Monte Carlo filtering for multi-aspect detection/tracking
    Bruno, Marcelo G. S.
    de Araujo, Rafael V.
    Pavlov, Anton G.
    2005 IEEE AEROSPACE CONFERENCE, VOLS 1-4, 2005, : 2092 - 2100
  • [42] Online multitarget detection and tracking using sequential Monte Carlo methods
    Li, J
    Ng, W
    Godsill, S
    Vermaak, J
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 115 - 121
  • [43] Multi-target tracking in clutter with sequential Monte Carlo methods
    Liu, B.
    Ji, C.
    Zhang, Y.
    Hao, C.
    Wong, K. -K.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (05): : 662 - 672
  • [44] Sequential Monte Carlo methods for collaborative multi-sensor tracking
    Li, Xinrong
    Yang, Jue
    2007 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-8, 2007, : 3189 - 3194
  • [45] Sequential Monte Carlo tracking by fusing multiple cues in video sequences
    Brasnett, Paul
    Mihaylova, Lyudmila
    Bull, David
    Canagarajah, Nishan
    IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1217 - 1227
  • [46] Sequential Monte Carlo methods for multiple target tracking and data fusion
    Hue, C
    Le Cadre, JP
    Pérez, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 309 - 325
  • [47] Multisensor fusion for target tracking using sequential Monte Carlo methods
    Vemula, Mahesh
    Djuric, Petar M.
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1223 - 1227
  • [48] Tracking variable number of targets using sequential Monte Carlo methods
    Ng, William
    Li, Jack
    Godsill, Simon
    Vermaak, Jaco
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 1207 - 1211
  • [49] Tracking multiple interacting subcellular structure by sequential Monte Carlo method
    Wen, Quan
    Luby-Phelps, Kate
    Gao, Jean
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2009, 3 (03) : 314 - 332
  • [50] On Scale Invariant Features and Sequential Monte Carlo Sampling for Bronchoscope Tracking
    Luo, Xiongbiao
    Feuerstein, Marco
    Kitasaka, Takayuki
    Natori, Hiroshi
    Takabatake, Hirotsugu
    Hasegawa, Yoshinori
    Mori, Kensaku
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964