Semantic Segmentation With Oblique Convolution for Object Detection

被引:4
|
作者
Lin, Yun [1 ,2 ]
Sun, Xiaogang [1 ]
Xie, Zhixuan [1 ,2 ]
Yi, Jiaqi [1 ,2 ]
Zhong, Yong [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu 610041, Peoples R China
[2] Univ Chinese Acad Sci, Comp Control Coll, Beijing 100049, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
关键词
Artificial intelligence; computer vision; convolution neural network; machine learning; neural networks; object detection; object segmentation; predictive models;
D O I
10.1109/ACCESS.2020.2971058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of artificial intelligence, object detection is playing an important role in the field of computer vision. Instead of anchors, we use pixel classification inspired by Semantic Segmentation to get the local extreme points of the four boundaries of an object and then the boundary positions. We calculate the possibility whether every pixel in the image is the extreme point by hourglass network. With the introduction of the mask mechanism and oblique convolution, the network has achieved better results. The experiment result shows that: it achieves an AP of 37.7% on the MS COCO dataset while costing less than 3 seconds on mobile.
引用
收藏
页码:25326 / 25334
页数:9
相关论文
共 50 条
  • [41] Semantic Segmentation With Object Clique Potentials
    Qi, Xiaojuan
    Shi, Jianping
    Liu, Shu
    Liao, Renjie
    Jia, Jiaya
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2587 - 2595
  • [42] Semantic Segmentation Priors for Object Discovery
    Garcia, German M.
    Husain, Farzad
    Schulz, Hannes
    Frintrop, Simone
    Torras, Carme
    Behnke, Sven
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 549 - 554
  • [43] Semantic image segmentation and object labeling
    Athanasiadis, Thanos
    Mylonas, Phivos
    Avrithis, Yannis
    Kollias, Stefanos
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2007, 17 (03) : 298 - 312
  • [44] Combined Segmentation and Visual Attention for Object Categorization and Video Semantic Concepts Detection
    Tan, Li
    Cao, Yuanda
    Yang, Minghua
    He, Qiaoyan
    2008 3RD INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND APPLICATIONS, VOLS 1 AND 2, 2008, : 694 - 699
  • [45] Exploiting Depth From Single Monocular Images for Object Detection and Semantic Segmentation
    Cao, Yuanzhouhan
    Shen, Chunhua
    Shen, Heng Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 836 - 846
  • [46] An efficient semantic segmentation method based on transfer learning from object detection
    Yang, Wei
    Zhang, Jianlin
    Chen, Zhongbi
    Xu, Zhiyong
    IET IMAGE PROCESSING, 2021, 15 (01) : 57 - 64
  • [47] A UNIFIED SEMANTIC SEGMENTATION AND OBJECT DETECTION FRAMEWORK FOR SYNTHETIC APERTURE SONAR IMAGERY
    Steele, Shannon-Morgan
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [48] Multimodal Neural Networks: RGB-D for Semantic Segmentation and Object Detection
    Schneider, Lukas
    Jasch, Manuel
    Froehlich, Bjoern
    Weber, Thomas
    Franke, Uwe
    Pollefeys, Marc
    Raetsch, Matthias
    IMAGE ANALYSIS, SCIA 2017, PT I, 2017, 10269 : 98 - 109
  • [49] Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation
    Yao, Jian
    Fidler, Sanja
    Urtasun, Raquel
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 702 - 709
  • [50] RGB-D object detection and semantic segmentation for autonomous manipulation in clutter
    Schwarz, Max
    Milan, Anton
    Periyasamy, Arul Selvam
    Behnke, Sven
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (4-5): : 437 - 451