Quantum Annealing for Large MIMO Downlink Vector Perturbation Precoding

被引:11
|
作者
Kasi, Srikar [1 ]
Singh, Abhishek Kumar [1 ]
Venturelli, Davide [2 ]
Jamieson, Kyle [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Space Res Assoc, Washington, DC USA
基金
美国国家科学基金会;
关键词
Vector Perturbation; Downlink Precoding; Quantum Computation; Quantum Annealing; Optimization; MULTIANTENNA MULTIUSER COMMUNICATION;
D O I
10.1109/ICC42927.2021.9500557
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In a multi-user system with multiple antennas at the base station, precoding techniques in the downlink broadcast channel allow users to detect their respective data in a noncooperative manner. Vector Perturbation Precoding (VPP) is a non-linear variant of transmit-side channel inversion that perturbs user data to achieve full diversity order. While promising, finding an optimal perturbation in VPP is known to be an NP-hard problem, demanding heavy computational support at the base station and limiting the feasibility of the approach to small MIMO systems. This work proposes a radically different processing architecture for the downlink VPP problem, one based on Quantum Annealing (QA), to enable the applicability of VPP to large MIMO systems. Our design reduces VPP to a quadratic polynomial form amenable to QA, then refines the problem coefficients to mitigate the adverse effects of QA hardware noise. We evaluate our proposed QA based VPP (QAVP) technique on a real Quantum Annealing device over a variety of design and machine parameter settings. With existing hardware, QAVP can achieve a BER of 10(-4) with 100 mu s compute time, for a 6x6 MIMO system using 64 QAM modulation at 32 dB SNR.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] MINIMUM PROBABILITY-OF-ERROR PERTURBATION PRECODING FOR THE ONE-BIT MASSIVE MIMO DOWNLINK
    Swindlehurst, A.
    Saxena, A.
    Mezghani, A.
    Fijalkow, I.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6483 - 6487
  • [22] Efficient multi-user MIMO precoding based on GSVD and vector perturbation
    Park, Jaehyun
    Chun, Joohwan
    Jeong, Byung Jang
    SIGNAL PROCESSING, 2012, 92 (02) : 611 - 615
  • [23] MIMO multiuser precoding system using weighted MMSE prefilter and vector perturbation
    Kim, Kyeong Jin
    Zhang, Jianzhong
    Iltis, Ronald A.
    2007 IEEE RADIO AND WIRELESS SYMPOSIUM, 2007, : 380 - 380
  • [24] An approach to physical layer security in MIMO wireless via vector perturbation precoding
    Du, Liutong
    Li, Lihua
    Paulraj, Arogyaswami J.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2020, 20 (02) : 117 - 129
  • [25] Sum rates for multi-user MIMO vector perturbation precoding with regularization
    Razi, Adeel
    Ryan, Daniel J.
    Yuan, Jinhong
    Collings, Iain B.
    PHYSICAL COMMUNICATION, 2014, 13 : 187 - 196
  • [26] Vector Perturbation Precoding Revisited
    Maurer, Johannes
    Jalden, Joakim
    Seethaler, Dominik
    Matz, Gerald
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 315 - 328
  • [27] Precoding for Multiuser Spatial Multiplexing MIMO Downlink
    张碧军
    朱光喜
    刘应状
    TsinghuaScienceandTechnology, 2006, (05) : 597 - 605
  • [28] Cluster Extrapolation for FDD Downlink MIMO Precoding
    Roy, Matthieu
    Paquelet, Stephane
    Crussiere, Matthieu
    2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,
  • [29] PRECODING DESIGN FOR THE MIMO-ROC DOWNLINK
    Rizzello, Valentina
    Joham, Michael
    Matera, Andrea
    Utschick, Wolfgang
    Spagnolini, Umberto
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4694 - 4698
  • [30] Robust Precoding for Multicell MIMO Downlink Systems
    Pan, Cunhua
    Su, Cailuan
    Chen, Ming
    2013 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2013), 2013,