Spontaneous L-mode plasma rotation scaling in the TCV tokamak

被引:77
|
作者
Duval, B. P. [1 ]
Bortolon, A. [1 ]
Karpushov, A. [1 ]
Pitts, R. A. [1 ]
Pochelon, A. [1 ]
Sauter, O. [1 ]
Scarabosio, A. [1 ]
Turri, G. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Assoc EURATOM Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1063/1.2841528
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Predicting intrinsic plasma rotation and its shear, which often help stabilize plasma instabilities affecting plasma performance, is important for prospective fusion grade devices. Although rotation in ITER-like scenarios has been extrapolated from measured experimental plasma rotation data, little is understood about the underlying mechanisms governing either the generation or dissipation of momentum in a tokamak plasma. This paper reports on studies of intrinsic toroidal and poloidal plasma rotation from charge exchange spectroscopy using a low power diagnostic beam on the TCV tokamak [Tonetti , in Proceedings of the Symposium on Fusion Technology (1991), p. 587] that drives negligible toroidal velocity. In TCV, plasma behavior can be separated by the core and edge regions. In limited configurations, the core rotates in the counter-current direction and can reverse to the co-current direction with a < 10% increase in the plasma density. This is different for diverted configurations where the core rotates in the co-current direction reversing to the counter-current direction at higher plasma densities. For all these situations, core toroidal momentum is strongly transported by plasma sawteeth oscillations. In contrast, the toroidal edge rotation is close to stationary for limited discharges but evolves with plasma density for diverted configurations. Theoretical models that predict a change in momentum transport from turbulence have previously been suggested to provide a mechanism that might explain these phenomena. In this paper, mode activity that changes at the toroidal velocity reversal, is identified as a new possible candidate. In the absence of an available model that can explain these basic phenomena, this paper presents observations and, where possible, scaling of the rotation profiles with some of the major plasma parameters such as current, density and shape to guide the development of a physics model for use in improving the extrapolation of the rotation amplitude and profiles to future devices. (C) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Chaotic motions of the L-mode to H-mode transition model in tokamak
    陈芳启
    周良强
    王霞
    陈予恕
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (07) : 811 - 820
  • [32] Filamentary velocity scaling validation in the TCV tokamak
    Tsui, C. K.
    Boedo, J. A.
    Myra, J. R.
    Duval, B.
    Labit, B.
    Theiler, C.
    Vianello, N.
    Vijvers, W. A. J.
    Reimerdes, H.
    Coda, S.
    Fevrier, O.
    Harrison, J. R.
    Horacek, J.
    Lipschultz, B.
    Maurizio, R.
    Nespoli, F.
    Sheikh, U.
    Verhaegh, K.
    Walkden, N.
    PHYSICS OF PLASMAS, 2018, 25 (07)
  • [33] Chaotic motions of the L-mode to H-mode transition model in tokamak
    Chen, Fang-qi
    Zhou, Liang-qiang
    Wang, Xia
    Chen, Yu-shu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (07) : 811 - 820
  • [34] Investigation of the effects of impurity seeding under different magnetic configurations in L-mode plasma in EAST tokamak
    Xiang, Lingyan
    Guo, Houyang
    Wischmeier, Marco
    Wu, Zhenwei
    Wang, Liang
    Duan, Yanmin
    Gan, Kaifu
    Shen, Yongcai
    Chen, Yingjie
    PHYSICS OF PLASMAS, 2017, 24 (09)
  • [35] Spontaneous core toroidal rotation in Alcator C-Mod L-mode, H-mode and ITB plasmas
    Rice, J. E.
    Ince-Cushman, A. C.
    Reinke, M. L.
    Podpaly, Y.
    Greenwald, M. J.
    LaBombard, B.
    Marmar, E. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
  • [36] On the non-stiffness of edge transport in L-mode tokamak plasmas
    Sauter, O.
    Brunner, S.
    Kim, D.
    Merlo, G.
    Behn, R.
    Camenen, Y.
    Coda, S.
    Duval, B. P.
    Federspiel, L.
    Goodman, T. P.
    Karpushov, A.
    Merle, A.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [37] MODE STRUCTURE AND ROTATION IN ST TOKAMAK PLASMA
    HOSEA, JC
    BOBELDIJ.C
    HICKOK, RL
    JOBES, FC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1232 - &
  • [38] Observation of the intrinsic rotation in KSTAR Ohmic L-mode plasmas
    Na, D. H.
    Na, Yong-Su
    Lee, S. G.
    Angioni, C.
    Yang, S. M.
    Kim, H. -S.
    Hahm, T. S.
    Ko, W. H.
    Jhang, H.
    Lee, W. J.
    NUCLEAR FUSION, 2016, 56 (03)
  • [39] Simulations of drift resistive ballooning L-mode turbulence in the edge plasma of the DIII-D tokamak
    Cohen, B. I.
    Umansky, M. V.
    Nevins, W. M.
    Makowski, M. A.
    Boedo, J. A.
    Rudakov, D. L.
    McKee, G. R.
    Yan, Z.
    Groebner, R. J.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [40] Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasma
    Yoshida, M.
    Koide, Y.
    Takenaga, H.
    Urano, H.
    Oyama, N.
    Kamiya, K.
    Sakamoto, Y.
    Matsunaga, G.
    Kamada, Y. K.
    NUCLEAR FUSION, 2007, 47 (08) : 856 - 863