Fault tolerance calculations for clocked quantum-dot cellular automata devices

被引:14
|
作者
Khatun, M [1 ]
Barclay, T
Sturzu, I
Tougaw, PD
机构
[1] Ball State Univ, Dept Phys & Astron, Ctr Computat Nanosci, Muncie, IN 47306 USA
[2] Valparaiso Univ, Dept Elect & Comp Engn, Valparaiso, IN 46383 USA
关键词
D O I
10.1063/1.2128473
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a numerical study of fault tolerance properties in quantum-dot cellular automata (QCA) devices. A full-basis quantum method is used for calculations of the Hamiltonian, and a statistical model has been introduced to simulate the influence of position defects of the dots within cells on the logical output. Combined effects of temperature and cell defects on a shift register have been studied. Uniform and normal distributions have been used for the cell defect simulations. Normal distribution simulations produce realistic results compared to the uniform distribution. In order to show the operational limit of a device, parameters such as "displacement factor" and "success rate" are introduced. Results show that the fault tolerance of a QCA device is strongly dependent on temperature as well as on the cell defects. The robustness of a shift register is also dependent on the size of the device. (c) 2005 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Reliability and defect tolerance in metallic quantum-dot cellular automata
    Liu, Mo
    Lent, Craig S.
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2007, 23 (2-3): : 211 - 218
  • [32] Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata
    Orlov, AO
    Amlani, I
    Kummamuru, RK
    Ramasubramaniam, R
    Toth, G
    Lent, CS
    Bernstein, GH
    Snider, GL
    APPLIED PHYSICS LETTERS, 2000, 77 (02) : 295 - 297
  • [33] Molecular quantum-dot cellular automata
    Lent, CS
    Isaksen, B
    Lieberman, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (04) : 1056 - 1063
  • [34] Molecular quantum-dot cellular automata
    Isaksen, B
    Lent, CS
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 5 - 8
  • [35] Implementations of Quantum-dot Cellular Automata
    Snider, Gregory
    Orlov, Alexei
    Lent, Craig
    Bernstein, Gary
    Lieberman, Marya
    Fehlner, Thomas
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 631 - +
  • [36] Quantum-dot cellular automata adders
    Wang, W
    Walus, K
    Jullien, GA
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 461 - 464
  • [37] PLAs in quantum-dot cellular automata
    Crocker, Michael
    Hu, Xiaobo Sharon
    Niemier, Michael
    Yan, Minjun
    Bernstein, Gary
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (03) : 376 - 386
  • [38] Electronic Quantum-dot Cellular Automata
    Snider, Gregory L.
    Orlov, Alexei O.
    Joshi, Vishwanath
    Joyce, Robin A.
    Qi, Hua
    Yadavalli, Kameshwar K.
    Bernstein, Gary H.
    Fehlner, Thomas P.
    Lent, Craig S.
    2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1-4, 2008, : 549 - 552
  • [39] PLAs in Quantum-dot Cellular Automata
    Hu, Xiaobo Sharon
    Crocker, Michael
    Niemier, Michael
    Yan, Minjun
    Bernstein, Gary
    IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, PROCEEDINGS: EMERGING VLSI TECHNOLOGIES AND ARCHITECTURES, 2006, : 242 - +
  • [40] Quantum computing with quantum-dot cellular automata
    Toáth, G.
    Lent, C.S.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (05): : 523151 - 523159