Poisson convergence of eigenvalues of circulant type matrices

被引:10
|
作者
Bose, Arup [1 ]
Hazra, Rajat Subhra [1 ]
Saha, Koushik [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
Circulant matrix; k-circulant matrix; Eigenvalues; Large dimensional random matrix; Moving average process; Normal approximation; Point process; Poisson random measure; Reverse circulant matrix; Spectral density; Symmetric circulant matrix; STATISTICS;
D O I
10.1007/s10687-010-0115-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the point processes based on the eigenvalues of the reverse circulant, symmetric circulant and k-circulant matrices with i.i.d. entries and show that they converge to a Poisson random measures in vague topology. The joint convergence of upper ordered eigenvalues and their spacings follow from this. We extend these results partially to the situation where the entries are come from a two sided moving average process.
引用
收藏
页码:365 / 392
页数:28
相关论文
共 50 条
  • [31] Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails
    Soshnikov, A
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2004, 9 : 82 - 91
  • [32] On circulant and two-circulant weighing matrices
    Arasu, K. T.
    Kotsireas, I. S.
    Koukouvinos, C.
    Seberry, Jennifer
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 43 - 51
  • [33] GENERALIZED INVERSES OF CIRCULANT AND GENERALIZED CIRCULANT MATRICES
    BELL, CL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 39 (AUG) : 133 - 142
  • [34] Random circulant matrices
    Glendinning, Richard H.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S761 - S762
  • [35] Joins of circulant matrices
    Doan, Jacqueline
    Minac, Jan
    Muller, Lyle
    Nguyen, Tung T.
    Pasini, Federico W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 190 - 209
  • [36] Circulant weighing matrices
    Krishnasamy Thiru Arasu
    Alex J. Gutman
    Cryptography and Communications, 2010, 2 : 155 - 171
  • [37] Limiting spectral distribution of circulant type matrices with dependent inputs
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2463 - 2491
  • [38] SPECTRAL NORM OF CIRCULANT TYPE MATRICES WITH HEAVY TAILED ENTRIES
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 299 - 313
  • [39] Circulant weighing matrices
    Arasu, Krishnasamy Thiru
    Gutman, Alex J.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 155 - 171
  • [40] On nonsingularity of circulant matrices
    Chen, Zhangchi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 612 : 162 - 176