Boolean functions with small spectral norm

被引:18
|
作者
Green, Ben [1 ]
Sanders, Tom [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WA, England
关键词
Fourier transform; spectral norm; L-1-norm; boolean functions; structure theorem;
D O I
10.1007/s00039-008-0654-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : F-2(n) ->{0, 1} be a boolean function, and suppose that the spectral norm parallel to f parallel to(A) := Sigma(r) vertical bar(f) over cap (r)vertical bar of f is at most M. Then [GRAPHICS] where L <= 2(2CM4) and each H-j is a subgroup of F-2(n). This result may be regarded as a quantitative analogue of the Cohen Helson - Rudin structure theorem for idempotent measures in locally compact abelian groups.
引用
收藏
页码:144 / 162
页数:19
相关论文
共 50 条
  • [1] Boolean Functions with small Spectral Norm
    Ben Green
    Tom Sanders
    Geometric and Functional Analysis, 2008, 18 : 144 - 162
  • [2] Boolean Functions with Small Approximate Spectral Norm
    Cheung, Tsun-Ming
    Hatami, Hamed
    Zhao, Rosie
    Zilberstein, Itai
    DISCRETE ANALYSIS, 2024,
  • [3] On the Structure of Boolean Functions with Small Spectral Norm
    Amir Shpilka
    Avishay Tal
    Ben lee Volk
    computational complexity, 2017, 26 : 229 - 273
  • [5] ON THE STRUCTURE OF BOOLEAN FUNCTIONS WITH SMALL SPECTRAL NORM
    Shpilka, Amir
    Tal, Avishay
    Volk, Ben Lee
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 229 - 273
  • [6] Almost Boolean functions: The design of Boolean functions by spectral inversion
    Clark, JA
    Jacob, JL
    Maitra, S
    Stanica, P
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2173 - 2180
  • [7] Almost Boolean functions: The design of Boolean functions by spectral inversion
    Clark, JA
    Jacob, JL
    Maitra, S
    Stanica, P
    COMPUTATIONAL INTELLIGENCE, 2004, 20 (03) : 450 - 462
  • [8] On Spectral Estimators of Boolean Functions
    Schober, Steffen
    Bossert, Martin
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1658 - 1662
  • [9] Gowers norm of some classes of bent Boolean functions
    Gangopadhyay, Sugata
    Mandal, Bimal
    Stanica, Pantelimon
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (05) : 1131 - 1148
  • [10] On the distribution of the spectral complexity of boolean functions
    Ryazanov, B.V.
    1600, Publ by VSP Int Sci Publ, Zeist, Netherlands (04):