Synthesizing a nanoparticle distribution in magnetic fluid hyperthermia

被引:7
|
作者
Di Barba, P. [1 ]
Dughiero, F. [2 ]
Sieni, E. [2 ]
机构
[1] Univ Pavia, Dept Elect Engn, I-27100 Pavia, Italy
[2] Univ Padua, Dept Elect Engn, Padua, Italy
关键词
Evolutionary computing; Magnetic nanoparticles; FE three-dimensional transient analysis; Nanotechnology; Magnetohydrodynamics; TISSUE; FIELD;
D O I
10.1108/03321641111152667
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose - The purpose of this paper is to present the synthesis of magnetic fluid characteristics, like diameter of nanoparficles (NPs) and their concentration, in order to obtain a prescribed temperature rate. An evolution strategy algorithm is used in the optimization procedure, while three-dimensional finite-element (FE) modelling is used for magnetic field and thermal field analysis in transient conditions. Design/methodology/approach - FE analysis has been used in order to compute the magnetic and thermal field in a suitable model of the tumor region. The power density due to NP has been accordingly derived. Findings - The NP distribution, giving a prescribed thermal response, is synthesized. Practical implications The proposed method can be used to design a therapeutic treatment based on magnetic fluid hyperthermia. Originality/value - The paper belongs to a streamline of innovative studies on computational hyperthermia.
引用
收藏
页码:1507 / 1516
页数:10
相关论文
共 50 条
  • [21] Study on the thermal field distribution of cholangiocarcinoma model by magnetic fluid hyperthermia
    Cai Z.
    Lu M.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (03): : 528 - 538
  • [22] Numerical Analysis of Temperature Distribution in Ellipsoidal Tumors in Magnetic Fluid Hyperthermia
    Polychronopoulos, Nickolas D.
    Gkountas, Apostolos A.
    Sarris, Ioannis E.
    Spyrou, Leonidas A.
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 354 - 357
  • [23] Magnetic fluid hyperthermia (MFH)
    Jordan, A
    Wust, P
    Scholz, R
    Faehling, H
    Krause, J
    Felix, R
    SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS, 1997, : 569 - 595
  • [24] Uniform and nonuniform precession of a nanoparticle with finite anisotropy in a liquid: Opportunities and limitations for magnetic fluid hyperthermia
    Lyutyy, T. V.
    Hryshko, O. M.
    Yakovenko, M. Yu.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 473 : 198 - 204
  • [25] Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia
    Lanier, Olivia L.
    Korotych, Olena, I
    Monsalve, Adam G.
    Wable, Dayita
    Savliwala, Shehaab
    Grooms, Noa W. F.
    Nacea, Christopher
    Tuitt, Omani R.
    Dobson, Jon
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2019, 36 (01) : 687 - 701
  • [26] Nonlinear simulations to optimize magnetic nanoparticle hyperthermia
    Reeves, Daniel B.
    Weaver, John B.
    APPLIED PHYSICS LETTERS, 2014, 104 (10)
  • [27] On the magnetic nanoparticle injection strategy for hyperthermia treatment
    Jiang, Qian
    Ren, Feng
    Wang, Chenglei
    Wang, Zhaokun
    Kefayati, Gholamreza
    Kenjeres, Sasa
    Vafai, Kambiz
    Liu, Yang
    Tang, Hui
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 235
  • [28] Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling
    Serantes, David
    Simeonidis, Konstantinos
    Angelakeris, Makis
    Chubykalo-Fesenko, Oksana
    Marciello, Marzia
    del Puerto Morales, Maria
    Baldomir, Daniel
    Martinez-Boubeta, Carlos
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (11): : 5927 - 5934
  • [29] Magnetic nanoparticle hyperthermia enhanced by a rotating field
    Barrera, Gabriele
    Allia, Paolo
    Tiberto, Paola
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [30] Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia
    Usov, N. A.
    Nesmeyanov, M. S.
    Tarasov, V. P.
    SCIENTIFIC REPORTS, 2018, 8