Uncertainty in functional principal component analysis

被引:4
|
作者
Sharpe, James [1 ]
Fieller, Nick [2 ]
机构
[1] Sharpe Actuarial Ltd, Alton, Hants, England
[2] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
关键词
Functional principal component analysis; bootstrap; order reversals; CONFIDENCE-REGIONS; BOOTSTRAP;
D O I
10.1080/02664763.2016.1140728
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis (PCA) and functional principal analysis are key tools in multivariate analysis, in particular modelling yield curves, but little attention is given to questions of uncertainty, neither in the components themselves nor in any derived quantities such as scores. Actuaries using PCA to model yield curves to assess interest rate risk for insurance companies are required to show any uncertainty in their calculations. Asymptotic results based on assumptions of multivariate normality are unsatisfactory for modest samples, and application of bootstrap methods is not straightforward, with the novel pitfalls of possible inversions in order of sample components and reversals of signs. We present methods for overcoming these difficulties and discuss arising of other potential hazards.
引用
收藏
页码:2295 / 2309
页数:15
相关论文
共 50 条
  • [31] Robust Bayesian functional principal component analysis
    Zhang, Jiarui
    Cao, Jiguo
    Wang, Liangliang
    STATISTICS AND COMPUTING, 2025, 35 (02)
  • [32] Computational considerations in functional principal component analysis
    Ocana, Francisco A.
    Aguilera, Ana M.
    Escabias, Manuel
    COMPUTATIONAL STATISTICS, 2007, 22 (03) : 449 - 465
  • [33] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):
  • [34] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [35] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [36] Unfold Principal Component Analysis and Functional Unfold Principal Component Analysis for Online Plant Stress Detection
    Baert, A.
    Villez, K.
    Steppe, K.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 195 - 201
  • [37] Functional outlier detection with robust functional principal component analysis
    Pallavi Sawant
    Nedret Billor
    Hyejin Shin
    Computational Statistics, 2012, 27 : 83 - 102
  • [38] Functional outlier detection with robust functional principal component analysis
    Sawant, Pallavi
    Billor, Nedret
    Shin, Hyejin
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 83 - 102
  • [40] Functional classwise principal component analysis: a classification framework for functional data analysis
    Chatterjee, Avishek
    Mazumder, Satyaki
    Das, Koel
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (02) : 552 - 594