An easy case of sorting by reversals

被引:0
|
作者
Tran, N [1 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that sorting by reversals can be performed in polynomial time when the number of breakpoints is twice the distance. This result answers an open question in [KS95].
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [41] Common intervals and sorting by reversals: a marriage of necessity
    Bergeron, A
    Heber, S
    Stoye, J
    BIOINFORMATICS, 2002, 18 : S54 - S63
  • [42] Sorting by weighted reversals, transpositions, and inverted transpositions
    Bader, Martin
    Ohlebusch, Enno
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (05) : 615 - 636
  • [43] Memetic Algorithm for Sorting Unsigned Permutations by Reversals
    Soncco-Alvarez, Jose Luis
    Ayala-Rincon, Mauricio
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 2770 - 2777
  • [44] Finding sorting traces of reversals in the presence of hurdles
    Tripathi, B.
    Amritanjali
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING: NEW ADVANCES, 2016, : 85 - 90
  • [45] A more efficient algorithm for perfect sorting by reversals
    Berard, Severine
    Chauve, Cedric
    Paul, Christophe
    INFORMATION PROCESSING LETTERS, 2008, 106 (03) : 90 - 95
  • [46] Listing all sorting reversals in quadratic time
    Krister M Swenson
    Ghada Badr
    David Sankoff
    Algorithms for Molecular Biology, 6
  • [47] Sorting by block-interchanges and signed reversals
    Mira, Cleber
    Meidanis, Joao
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, PROCEEDINGS, 2007, : 670 - +
  • [48] An algorithm to enumerate sorting reversals for signed permutations
    Siepel, AC
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) : 575 - 597
  • [49] Listing all sorting reversals in quadratic time
    Swenson, Krister M.
    Badr, Ghada
    Sankoff, David
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
  • [50] AUTOMATIC SORTING MADE EASY
    ZARLEY, C
    PERSONAL COMPUTING, 1984, 8 (01): : 48 - &